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LECTURE 14

AREAS ENCLOSED BY CURVES ... and RIEMANN SUMS

the AREA UNDER A CURVE:
Now we begin the study of the so-called INTEGRAL CALCULUS. Whereas we've been studying

DIFFERENTIAL CALCULUS which deals with differentiation ... arising from considerations involving the rate of
change of functions and the slopes of tangent lines ... NOW we consider integration arising from considerations
involving the area enclosed by curves.

In the differential calculus we stood close to a function and investigated its local behaviour ... how it
changed when the independent variable changed by some small amount. In the integral calculus we stand back and
look at the global behaviour ... involving large changes in the independent variables ... and, as we shall see, this is
most easily accomplished by summing the effects of small changes!

To begin with, we consider the problem of finding the area beneath a curve y = f(x), from x = a to x = b,
meaning the area enclosed by the curve y = f(x) and the three lines x = a, x = b and y = 0 (the x-axis). Later we'll
generalize to area enclosed on all sides by curves.

In fact, to simplify even further, we'll consider the area under y = mx from x = 0 to x = b. Since it's a

triangle and we have a formula for that, namely 
1
2 (base) (height) , then we can check the method we're about to

describe.
The first step is to divide the interval from x = 0 to x = b into n smaller "subintervals" (where n is some

large number, like 1,000,000). For the interval 0 ≤ x ≤ b, the n subintervals will have length h = 
b
n   and the          x-

coordinates of the points of subdivision are 0, h, 2h, 3h, .... etc. until b = nh (which is obvious, since h = b/n).

The next step is to erect a rectangle on each subinterval, choosing as height some convenient value of y in
each subinterval. (The width of every rectangle is the same: h.) For now, we'll choose as height the value of y at the
right-end of each subinterval, meaning mh, m(2h), m(3h) ... etc. (since y = mx gives the height for any x).

The next step is to add all the areas of the rectangles (which is easy because we have a formula for that). For
our choice of heights, we get a SUM of terms each being (width)(height) for each rectangle:

 SUM of areas of rectangles = h(mh) + h(2mh) + h(3mh) + .... h(nmh)  .

Finally, we let n−>∞. If the SUM of areas of all the rectangles has a limiting value as n−>∞, then that's the

area under the curve. For our problem, we need to find 
 

lim
n−>∞

 ( )h(mh) + h(2mh) + h(3mh) + .... h(nmh)   which seems

a formidable task ... but isn't. Remember, m is a constant (the slope of the given straight line) and we can put  h = 
b
n 

. The SUM is then m 


b

n  
2
 (1 + 2 + 3 + ... + n) and there's a magic formula for the sum of the integers from 1 to n,

namely 
n(n+1)

2   . Hence we can write our SUM of rectangular areas as  
m
2  b2 

n+1
n    and find its limit as n−>∞ which

is easy since  
 

lim
n−>∞

 
n+1

n   = 1. Finally, then,  
 

lim
n−>∞

  SUM = 
mb2

2   = 
1
2 (b)(mb)  = 

1
2 (base)(height)  and (voila!), the

technique we've described works for our triangle! In fact, had we taken as height not the value of y at the right-end of
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each interval but, say, the value at the left-end, we'd get a SUM = m 


b

n  
2
 (0 + 1 + 2 + 3 + ... + (n-1))

= 
m
2   b2 

n-1
n    which still has the correct limit: 

mb2

2   . Indeed (remarkably) any y-value in each subinterval could have

been chosen as height. The limiting value of the SUM of rectangles would still be 
mb2

2    ... and that gives us great

confidence in this technique. In fact, had we taken some other y-value (rather than the right-y or the left-y which
happen to be the maximum-y and the minimum-y in each subinterval) we'd get a SUM of rectangular areas which
would be less than the first SUM we obtained, and greater than the second ... and since these two SUMs have the
same limit, any other SUM would too (remember the SQUEEZE theorem?).

Now we generalize to an arbitrary y = f(x) on a ≤ x ≤ b ... except we must insist that f(x) be continuous on
this closed interval and it must also be positive. (Later we'll see what happens when these conditions aren't met.)

First we subdivide the interval a ≤ x ≤ b into n

subintervals, each of width  h = 
b - a

n   .

Then we pick some convenient y-value (i.e an
f(x)-value) in each subinterval. (In the diagram, we've
chosen the value of f(x) at the right-end of each
subinterval as we did before.)

Then we construct n rectangles each with width
h and height equal to the chosen y-value.

Then we SUM the areas of all rectangles. For our chosen heights, we'd get:

 SUM of areas of rectangles = h f(a+h) + h f(a+2h) + h f(a+3h) + .... h f(a+nh)  .

Finally, we compute 
 

lim
n−>∞

 (SUM )  which we may write (using the sigma-notation for sums):

 AREA =  
 

lim
n−>∞

 ∑
k=1

n
 f(a+kh) h   and we'd have to compute this limit, realizing that "a" and "b" are

constants and h = 
b-a
n   . If the limit exists (regardless of which y-values we chose in each subinterval for our heights)

then it's the required AREA under y = f(x) from x = a to x = b.
Since h is an increment in x, it's sometimes convenient to use the notation h = ∆x (as we mentioned when

we considered derivatives, writing f '(x) = 
 

lim
∆x−>0

 
f(x+∆x) - f(x)

∆x
  ). Then our prescription for finding the AREA

becomes:   AREA =  
 

lim
n−>∞

 ∑
k=1

n
 f(a+k∆x) ∆x  .

This limit is called the DEFINITE INTEGRAL of f(x) from "a" to "b" and is written:

 
 

lim
n−>∞

 ∑
k=1

n
  f(a+k∆x) ∆x = ⌡⌠

a

b
 f(x) dx 

Note: If f(x) is measures in units of watts and x is measured in seconds, then the SUM  ∑
k=1

n
  f(a+k∆x) ∆x and

hence the definite integral ⌡⌠
a

b
 f(x) dx  are measured in watt-seconds. If f(x) is in metres and x in degrees, then the

definite integral is measured in metre-degrees. This is sometimes useful, especially if f(x) is a rate of change, like
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metres per second and x is measured in seconds, then f(x) dx, and hence ⌡⌠
a

b
 f(x) dx , is measured in metres. This

almost suggests the type of applications one might expect of the definite integral. In fact, let's talk more about these
units so we get a feel for what the definite integral is doing for us:

• If ⌡⌠
a

b
 f(x) dx  is measured in kilometres and x in hours then f(x) is in kilometres per hour ... a rate of change, so

the total number of kilometres  is obtained by summing the incremental changes in kilometres  as the hours go
by, from x = a to x = b.

• If ⌡⌠
a

b
 f(x) dx  is measured in dollars and x in kilograms, then f(x) is in dollars per kilogram... a rate of change, so

the total number of dollars is obtained by summing the incremental changes in dollars as the kilograms change,
from x = a to x = b.

• If ⌡⌠
a

b
 f(x) dx  is measured in hectares and x in months, then f(x) is in hectares per month ... a rate of change, so

the total number of hectares is obtained by summing the incremental changes in hectares as the month go by,
from x = a to x = b.

Although we interpret ⌡⌠
a

b
 f(x) dx  as an AREA, it's only so we have some convenient geometrical picture

(worth a thousand words?) just as we interpret 
dy
dx  as the slope of some tangent line when, in fact, derivatives are

almost never used to determine "slopes". Besides, if f(x) is measured in metres/second (a velocity) and x is measured

in seconds, then f(x) dx (hence the "sum" ⌡⌠
a

b
 f(x) dx  ) is measured in metres... a strange unit perhaps, for AREA! In

fact, this so-called AREA actually gives the total distance travelled by an object whose velocity at time "x" is "f(x)".

Example: Compute the total area of n rectangles under y = sin x from x = 0 to x = π.

Solution: We'll subdivide the interval [0,π] into n subintervals of length  h = 
π
n   and evaluate sin x at

x = h, 2h, 3h, ..., nh. This will give the heights of the rectangles. The widths are all the same, namely h. We get:

SUM = h sin(h) + h sin(2h) + h sin(3h) + ... + h sin(nh) or, substituting h = 
π
n  :

 SUM =  
π
n 



sin 

π
n + sin 

2π
n  + sin 

3π
n  + ... + sin 

nπ
n   . Now we'll evaluate, to 20 decimal places, for various values of

n ... but we'll ask  to do it! We'll: (1) ask for 20 digits, then (2) define h = π/n (  calls π Pi),
then (3) define our SUM, then (4) substitute various values of n, evaluating each time as a floating point (decimal)
number (using the  command "evalf"). If we're lucky we'll see the SUM approach some limiting value
which is the AREA under the graph of y = sin x from x = 0 to x = π:

• Digits:=20;
                                 Digits := 20
•h:=Pi/n;
                                   h := Pi/n

• SUM:=sum(h*sin(i*h),i=1..n):

• evalf(subs(n=10,SUM));
                             1.9835235375094545037
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•  evalf(subs(n=100,SUM));
                             1.9998355038874435049
• evalf(subs(n=1000,SUM));
                             1.9999983550656618233
• evalf(subs(n=5000,SUM));
                             1.9999999342026151656

The limit seems to be the number 2, so that's AREA under the graph of y = sin x from x = 0 to x = π.
PS:

P: So let's see you evaluate the definite integral:  ⌡⌠
0

b

 mx dx  .

S: Huh?

P: But we've just done that one:     ⌡⌠
0

b

 mx dx   = 
mb2

2   .

S: Do you expect me to do all this? I mean, am I expected to find the area by adding up all those rectangles?
P: There's an easier way which we'll get to soon. But remember when we defined the derivative? It was

f ' (x) =
 

lim
∆x−>0

 
f(x+∆x) - f(x)

∆x
   and we actually computed a few derivatives using this definition ... but usually there were

easier ways, like the product rule and quotient rule and chain rule. Here, too, we'll seldom have to resort to the definition

above. Anyway, how do you like the notation? We start with a SUM, which we write  ∑
k=1

n
  f(a+k∆x) ∆x, then we take the

limit and get ⌡⌠
a

b

 f(x) dx  . See the similarity? It's like starting with the slope of a line joining two points on a curve, 
∆y
∆x

  , then

taking the limit as ∆x−>0 and getting 
dy
dx  . Nice notation, eh?

         In fact I'm told that the symbol ⌡⌠
 

  is an old German symbol for s as in sum... so

you can think of ⌡⌠
a

b

 f(x) dx  as ⌡⌠
 

umming  elemental rectangular areas like "f(x)

dx". Don't you see? That's the area of a rectangle with height f(x) and width dx.
Nice, eh? This is quite nice because you can easily construct the definite integral
which represents an area without going through the hassle of finding a Riemann
SUM and then ...

S: A who?

 

P: Oh, I forgot to mention, the SUMs we've been talking about are called Riemann* Sums. That is, ∑
k=1

n
  f(a+k∆x) ∆x is called a

RIEMANN SUM  and its limit is the DEFINITE INTEGRAL. When we found the area under y = mx we first got a

Riemann sum: m ( )
b
n  

2
 (1 + 2 + 3 + ... + n). The big problem is not to find the Riemann sum, that's just adding up areas of

rectangles ... the big problem is finding its limit as n−>∞.

SOME TERMINOLOGY and PROPERTIES of the DEFINITE INTEGRAL:

                                                          
*  Bernhard Riemann (1826-1866) was educated at Gottingen University, Germany, the home of the most gifted

mathematician of all time: Carl Friedrich Gauss (1777-1855). Riemann (among many other things!) developed the
concept of SUMs (Riemann SUMS ... what else?) as the basis for the definite integral.
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In ⌡⌠
a

b
 f(x) dx  we call "a" the LOWER LIMIT and "b" the UPPER LIMIT and f(x) the INTEGRAND.

Because of the way in which the definite integral was defined we have the following properties (which
really require a proof ... but we'll just accept them without proof).

(A) ⌡⌠
a

b
(f(x)+g(x)) dx  = ⌡⌠

a

b
f(x) dx  + ⌡⌠

a

b
g(x) dx 

(B) ⌡⌠
a

b
(f(x)-g(x)) dx  = ⌡⌠

a

b
f(x) dx  - ⌡⌠

a

b
g(x) dx 

(C) ⌡⌠
a

b
f(x) dx  +⌡⌠

b

c
f(x) dx  = ⌡⌠

a

c
f(x) dx (D) ⌡⌠

a

b
k f(x) dx  = k ⌡⌠

a

b
f(x) dx 

(E) ⌡⌠
a

a
f(x) dx  = 0 (F) ⌡⌠

a

b
f(x) dx  = - ⌡⌠

b

a
f(x) dx 

The geometrical meaning of each of the above properties is clear, I think.
(A) The area under y = f(x) + g(x) is the area under y = f(x) PLUS the area under y = g(x).
(B) The area under y = f(x) - g(x) is the area under y = f(x) MINUS the area under y = g(x).
(C) The area under y = f(x) from "a "to "b" PLUS the area from "b" to "c" is the area from "a" to "c".
(D) If the function is multiplied by a constant k, its area is too.
(E) The area from x = a to x = a is zero. (What else?).

(F) Aaah, this one is not so obvious. If a < b (as usual) then the Riemann sum for ⌡⌠
b

a
 f(x) dx  subdivides the

interval into subintervals of width h = 
a - b

n   (it's always the upper limit minus the lower limit)  which is negative, so

the Riemann sum has the same terms as the Riemann sum for ⌡⌠
a

b
 f(x) dx  ... except for the sign of each term (because

h < 0). Hence the definite integrals are the negative, one of the other. If that's confusing, then just look at (C) and put

b = a. You'd get ⌡⌠
a

b
 f(x) dx  + ⌡⌠

b

a
 f(x) dx  = ⌡⌠

a

a
 f(x) dx  = 0 because of (E) ... and the result is just (F). And if that's

confusing, then just accept it.

Example: Find a Riemann sum whose limit (as n−>∞) is ⌡⌠
1

3

ex dx  .

(Practice the mathspeak: the lower limit is 1, the upper limit is 3 and the integrand is ex  and we're looking at the
integral of ex from 1 to 3 ... NOT the integral "from 3 to 1" ... we've got to get the jargon right!)

Solution: The interval is 1 ≤ x ≤ 3 and we subdivide it into n parts of width h = 
3-1
n   = 

2
n  . The points of
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subdivision are then 1, 1+h, 1+2h, 1+3h, ..., 1+nh (the last of which, of course, is "3"). On each subinterval we

construct a rectangle whose height is the value of y = ex at, say, the left-end. The heights are  e1, e1+h, e1+2h, ...,

e1+(n-1)h. The areas are each (height)(width), namely: e1 h, e1+h h, e1+2h h, ...., e1+(n-1)h h and the Riemann sum

is given by:  SUM = e1 h + e1+h h + e1+2h h + .... + e1+(n-1)h h  . The limit of this SUM, as n−>∞, is ⌡⌠
1

3

ex dx  :

the area under y = ex from x = 1 to x = 3.
PS:

S: Can you find this limit?
P: No problem. Normally I can't, but this one is easy. I factor out  h e  and rewrite the Riemann SUM as

h e (1 + eh + e2h + ... + e(n-1)h) and recognize the sum in the brackets as a geometric series for which I have a formula. It
sums to ...

S: How do you recognize the sum as a geometric series? I don't.

P: A geometric series has the form a + ar + ar2 + ar3 + ... where each term, divided by the preceding term, gives the same

number "r". In my series, each term divided by the preceding term gives the same number, namely eh ... so it's a geometric

series. The sum of n terms of such a series is   a  
rn - 1
r - 1     so my Riemann sum adds up to

h e  
(eh)n - 1

eh - 1
  = h e  

enh - 1

eh - 1
 .  I now just have to find the limit of this as n−>∞.

S: Good luck.

P: Remember that h = 
2
n   so nh = 2 so enh = e2 and my SUM can then be written  e (e2 - 1) 

h

eh - 1
  . Instead of replacing h by

2
n   and letting n−>∞, I'll leave the h in there and take the limit as h−>0. Our limit is just: e (e2 - 1) 

 
lim

h−>0
 

h

eh - 1
   and this

limit has the wonderful  
0
0   form so we can use l'Hopital's rule and get:  e (e2 - 1) 

 
lim

h−>0
 

h

eh - 1
   = e (e2 - 1)  

 
lim

h−>0
 
1

eh  

= e (e2 - 1) 
1
1   = e3 - e (where, to use l'Hopital, we differentiated numerator and denominator with respect to h).

S: Are you saying that the area under y = ex is e3 - e?
P: From x = 1 to x = 3 ... yes.
S: Amazing.
P: But there's an easier way. Pay attention:

THE FUNDAMENTAL THEOREM:
In order to avoid finding limits of Riemann sums, we do the following (and whoever thought of this was a

genius!).  To evaluate ⌡⌠
a

b
 f(x) dx  (and avoid the Riemann summing etc.)  we make the upper limit variable, calling it

"t". We now have a function of t, namely A(t) = ⌡⌠
a

t
 f(x) dx  . The first thing you'd like to do with such a weird and

brand-new kind of function is differentiate it! Unfortunately, none of the "differentiation rules" help ... so we must
resort to the definition of the derivative. (Imagine the first mathematician who did this. He/she read a book on the
Newton/Leibniz differential calculus and decided to use it on this area function, A(t). Imagine the surprise when ...
but we get ahead of ourselves.)

Consider   
A(t+h) - A(t)

h   (whose limit, as h−>0, is A'(t)) . The numerator is our AREA from x = a to    x

= t+h MINUS the area from x = a to x = t. Using properties of the definite integral we can rewrite this as:

⌡⌠
t

t+h
 f(x) dx , the area from x = t to x = t+h. The area of this narrow strip lies between the area of two rectangles, each
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of width "h": one has height equal to the minimum value of f(x) in [t,t+h] and the other has height equal to the
maximum value of f(x) in [t,t+h]. This sounds reminiscent of the SQUEEZE theorem (!) which now comes to our
rescue. We write:

h f(x)minimum ≤  ⌡⌠
t

t+h
 f(x) dx  ≤ h f(x)maximum

which, when divided through by h gives

f(x)minimum ≤ 
1
h   ⌡⌠

t

t+h
 f(x) dx  ≤  f(x)maximum

and now we can use the SQUEEZE theorem. Let h−>0 and recognize that the two "outside" limits are equal ... equal
to what?

P: Did you hear? Equal to what?
S: I wasn't listening. Could you repeat the question?
P: Never mind. Think of the maximum value of f(x) in t ≤ x ≤ t+h. It occurs somewhere in that interval, say at x = t1. Think

also of the minimum value of f(x) in the same interval. Suppose it occurs at x = t2. Then the above inequality reads : f(t1) ≤

1
h   ⌡⌠

t

t+h

 f(x) dx  ≤  f(t2). Okay, now let h−>0. What happens to t1 and t2?

S: I give up.
P: Think! They both lie in this interval from t to t+h, and that interval is shrinking to zero! They're both being squeezed to the

left as h−>0. They're both approaching ... what?
S: I give up. I really wasn't listening. Besides, I haven't understood much of what you said ...
P: Pay attention! Both t1 and t2 are approaching x = t, the left-end of the interval. Then f(t1) and f(t2) are both approaching f(t)

... provided f(x) is continuous!! Remember I said we'll assume f(x) is continuous? Well, here's why. As h−>0 the left- and

right-sides of the inequality  f(t1) ≤ 
1
h   ⌡⌠

t

t+h

 f(x) dx  ≤  f(t2) have the same limit, namely f(t). Hence, the SQUEEZE theorem

tell us that  
1
h   ⌡⌠

t

t+h

 f(x) dx  also has this limit. In other words

A'(t) = 
  

lim
h−>0

  
A(t+h) - A(t)

h    = 
 

lim
h−>0

   
1
h   ⌡⌠

t

t+h
 f(x) dx  = f(t)

and we've managed to differentiate this area function we've invented.
S: But this is confusing, isn't it? And you don't have any pictures! You always said a picture is worth a thousand ...
P: Okay, okay, here's a picture.

The shaded area is A(t+h) - A(t) = ⌡⌠
t

t+h

 f(x) dx  , the area

under the curve from x = t to x = t+h. See? It's greater
than the area of the rectangle whose height is the
minimum value of f(x) and less than the area of the
rectangle whose height is the maximum value of f(x).
That means that A(t+h) - A(t) lies between h fmin and

h fmax. That means that  
A(t+h) - A(t)

h    lies between

fmin and fmax. Now, as h−>0, the minimum and
maximum of f(x) (in the interval t ≤ x ≤ t+h) approach
f(t). That makes the limit of

    

A(t+h) - A(t)
h    equal to f(t) as well, because of the SQUEEZE theorem. That means we've managed to differentiate this
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rather weird function we've invented, and since A(t) = ⌡⌠
a

t

 f(x) dx   gave us  A'(t) = f(t) , we now see the general rule:

  A'(t) = the integrand evaluated at the upper limit  . In fact, if you remember the "differential", we would say      
dA
dt    = f(t)

and replace 
dA
dt    by  

∆A
∆t

   and get  
∆A
∆t

   ≈ f(t) so  ∆A ≈ f(t) ∆t and we'd see that the tiny change in area is approximately  f(t)

∆t which is the area of a certain rectangle. Nice, eh?
S: Okay, if you say so.

P: But we're not finished. Our goal is to evaluate ⌡⌠
a

b

 f(x) dx  without having to resort to limits of Riemann sums. To see how

the rest goes, let's do an example.

Example: Evaluate ⌡⌠
1

3

 ex dx  

Solution: First we introduce the "area function" A(t) = ⌡⌠
1

t

 ex dx  . Remember that, eventually, we want A(3).

Now we differentiate A(t) and get:  A'(t) = et, using the general rule, obtained from our investigation above:

 A'(t) = the integrand evaluated at the upper limit  . Now that we know the derivative of A(t), can we find A(t) itself

... hence A(3)? Yes, because A(t) must be one of the functions  et + C (for some value of the constant C). These are
the only functions which yield et when differentiated. But if A(t) = et + C, what's C? We know one other thing about

A(t) = ⌡⌠
1

t

 ex dx  which we haven't used: A(1) = ⌡⌠
1

1

 ex dx  = 0, hence A(1) = 0 = e1 + C and we now know that C = -

e1. Finally, then, A(t) = et - e1. When t = 3 we get A(3) = e3 - e (as we did before, when we used the Riemann sum
definition of the definite integral).

The general procedure to evaluate ⌡⌠
a

b
 f(x) dx  is as follows:

(1) Write A(t) = ⌡⌠
a

t
 f(x) dx (2) Then A'(t) = f(t)  (the integrand, evaluated at the upper limit).

(3) Then, if F(t) is any function whose derivative is f(t), we must have A(t) = F(t) + C.

(4) We also know that A(a) = ⌡⌠
a

a
 f(x) dx  = 0 and that gives 0 = F(a) + C, hence C = - F(a).

(5) Finally then, A(t) = ⌡⌠
a

t
 f(x) dx  = F(t) - F(a) and, for t = b we get:

⌡⌠
a

b
 f(x) dx  = F(b) - F(a)  where F(t) is any function whose derivative is f(t).

Some Terminology:

If 
d
dx  F(x) = f(x), then we call F(x) an ANTIDERIVATIVE of f(x).
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Examples: 

• ex is an antiderivative of ex  (because 
d
dx  ex = ex).

• cos x is an antiderivative of - sin x  (because 
d
dx  cos x = - sin x)

• ln x is an antiderivative of 
1
x  (because 

d
dx ln x = 

1
x )  ... but only if x > 0.

• arctan x is an antiderivative of 
1

1+x2  (because 
d
dx arctan x = 

1
1+x2 . 

• ln sec x  is an antiderivative of tan x  (because 
d
dx  ln sec x = 

1
sec x (sec x tan x)  = tan x) ... but only if sec x>0.

• ln  (sec x + tan x) is an antiderivative of sec x  (check this out!) ... but only if sec x + tan x >0.

S: You keep saying "but only if something > 0". What's that all about?
P: Remember, the logarithm of (something)  is defined only for positive something ... and ln  is, of course, a logarithm.

S: Suppose you wanted an antiderivative of, say 
1
x  , when x < 0?

P: Okay, let's consider y = 
d
dx  ln (-x) because now  -x  is  positive if x < 0. Let u = -x  and get y = ln u  so 

dy
dx  = 

dy
du 

du
dx  = 

1
u (-1)  

= 
1
-x (-1)  = 

1
x  . See? You still get 

1
x  . That means that 

d
dx  ln x = 

1
x   when x > 0 and 

d
dx  ln (-x) = 

1
x   when x < 0. Nice, eh?

We've got an antiderivative for  
1
x   for both positive and negative x. Of course we wouldn't expect an antiderivative which

gives 
1
x   for x = 0 because 

1
x   doesn't even have a value at x = 0.

S: Does that mean we've gotta know in advance whether x is positive or negative ... else we won't know which to use? I mean,
ln x  or  ln (-x) ... which one do we use?

P: What we need is a function, call him SAM, which is "x" when x > 0 and is "-x" when x < 0, then we can say that an
antiderivative is ln SAM. Can you think of such a function?

S: You gotta be kiddin'. I'm sorry I asked.
P: How about | x |. Remember the absolute value function? It has precisely the right properties. Hence ln | x | is an

antiderivative of 
1
x   for all x ≠ 0.

Note: Every function has an infinite number of antiderivatives. If 
d
dx  F(x) = f(x), then 

d
dx ( )F(x) + C   = f(x) as well

so F(x) + C is also an antiderivative, regardless of the choice of constant C. To get the most general
antiderivative, pick any one ... and add an arbitrary constant.

Examples: ex + C is the most general antiderivative of ex .
cos x + C is the most general antiderivative of - sin x  .

ln | x | + C is the most general antiderivative of 
1
x  (x ≠ 0) .

arctan x + C is the most general antiderivative of 
1

1+x2  .

Usually, antiderivatives are called INDEFINITE INTEGRALS and denoted by:  ⌡⌠ f(x) dx   without any

limits. In other words:

⌡⌠ f(x) dx  denotes an ANTIDERIVATIVE (or INDEFINITE INTEGRAL) of f(x)

A few examples are in order (and can be easily verified by differentiating the right-side):

⌡⌠ eax dx  = 
eax

a   + C ⌡
⌠1

x dx  = ln | x | + C
⌡
⌠ 1

a2+x2 dx  = 
1
a  arctan 

x
a  + C
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⌡
⌠ 1

a2 - x2
 dx  = arcsin 

x
a  + C ⌡⌠tan x dx  = ln  |sec x | + C         ⌡⌠sec x dx  = ln  | sec x + tan x | + C

Note: REMEMBER THE ABOVE INTEGRALS !!

Note: Remember that 
⌡
⌠ dx

a2+x2  is the  ⌡⌠um  of elements and each has the dimensions of 
dx

a2+x2  which, if "a" and

"x" are metres, has the dimensions of 
1

metres  so it's not surprising that this (indefinite) integral is 
1
a  arctan 

x
a  which

also has this dimension (because of the factor 
1
a  ... not because of the arctan 

x
a  which is an angle in RADIANS hence

has no dimensions). Note too that 
⌡
⌠ dx

a2-x2
  should be dimensionless ... which it is! These observations will help

determine when the  
1
a   appears in the evaluation of the integral and when it doesn't.

The rule for evaluating DEFINITE integrals can now be restated as:

the FUNDAMENTAL THEOREM

⌡⌠
a

b
 f(x) dx  = F(b) - F(a)  = [F(x)]

b
a  where F(x) is any antiderivative of f(x)

and the notation [F(x)]
b
a  means F(b) - F(a)

Important observation: after having found an antiderivative F(x), then evaluating at the upper and lower
limits and subtracting, the result is some number ... without any x's!

Examples: Evaluate the following definite integrals:

(a) ⌡⌠
0

π
 sin x dx (b)

⌡
⌠

0

π/4
1

1+x2 dx (c) ⌡⌠
-1

1

 x3 dx 

Solutions:

(a) ⌡⌠
0

π
 sin x dx   = [- cos x]

π
0  = (- cos π) - (- cos 0) = 1 + 1 = 2

Note, too, that ⌡⌠
0

π
 sin t dt   = [- cos t]

π
0  = (- cos π) - (- cos 0) = 1 + 1 = 2  and ⌡⌠

0

π
 sin z dz   = [- cos z]

π
0  = 2.

What name you give to the variable under the ⌡⌠
 

 
-sign  is irrelevant.

S: Hold on! Why do you pick - cos x as the antiderivative. I thought you said that  - cos x + C was the antiderivative of      sin
x? See? C! The constant of integration.

P: Right. Suppose I pick - cos x + C, then I'd evaluate it at the upper limit, at the lower limit, then subtract. I'd get
( )- cos π + C   - ( )- cos 0 + C   = (- cos π) - (- cos 0) = 1 + 1 = 2. See? The C has cancelled out. Moral?

S: Forget the "C".
P: ... when evaluating definite integrals, but never when evaluating indefinite integrals!
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(b)
⌡
⌠

0

1
1

1+x2 dx  = [arctan x]
1
0  = (arctan 1) - arctan 0 = π/4 - 0 = π/4

S: How do you know that arctan 1 = π/4?
P: If y = arctan x  then x = tan y (because they're inverses, remember?). Hence, if we want to know y = arctan 1, then write this

as 1 = tan y (everybody loves the tangent, nobody loves the arctangent, so we rewrite the relation to get it in terms of the
tangent function)... so what's y? That is, what angle (in RADIANS!) has a tangent of 1? It's π/4, so that's y. See?

S: No. There are millions of angles whose tangent is 1. Am I right?
P: Already you've forgotten about our inverse trig functions! Remember! We had to restrict the domain so as to guarantee the

existence of an inverse. That means that, if y = arctan x, then y must be chosen from the range  - π/2 < y < π/2, and now
there's only one angle there which has a tangent of 1 ... and it's π/4.

S: Okay, okay. I'm sorry I asked.

(c) ⌡⌠
-1

1

 x3 dx  = [ 
x4

4   ]
1
-1  = ( 

1
4  ) - ( 

1
4  ) = 0

The last is perhaps surprising. Does it really say that the area under y = x3, from x = -1 to x = 1, is zero?
We'll review a bit in the next lecture ... and see what this means.

LECTURE 15

MORE ON DEFINITE INTEGRATION

We first considered the problem of finding the area enclosed by y = f(x), x = a, x = b and y = 0 (the x-axis),
where f(x) was both continuous and positive in this interval. We then subdivided the area into the SUM of a
multitude (namely "n") of tiny rectangles (because we have a formula for the area of rectangles). Each rectangle had

a width h = 
b - a

n    and a height equal to some convenient value of f(x) in each subinterval. Letting the number of

rectangles become infinite, we arrived at the AREA (the limit of the Riemann SUM) which we denoted by ⌡⌠
a

b
 f(x) dx

. Now, what happens if f(x) is always negative on [a,b]? We repeat the same procedure, but now the heights of the
rectangles are all negative and we used (height)(width) to compute the area of each ... and (height) < 0 ... so we
actually get the negative of the areas. The limit of the Riemann SUM as n−>∞ yields not the area bounded by y =
f(x), x = a, x = b and y = 0 but the negative of that area. (Note that we now avoid using the phrase "the area beneath
y = f(x)" because this curve lies below the x-axis ... so the area below it is pretty large!)

Now back to ⌡⌠
-1

1

 x3 dx  . We may break this up into two integrals (using one of the properties of definite

integrals) and write: ⌡⌠
-1

1

 x3 dx  = ⌡⌠
-1

0

 x3 dx  + ⌡⌠
0

1

 x3 dx  where the second integral is indeed the area "beneath" y = x3

from x = 0 to x = 1 because y = x3 is positive. However, on -1 ≤ x ≤ 0, y = x3 is negative so the evaluation of this
integral gives the negative of the area enclosed by the the curve, the x-axis and x = -1, x = 0. The integral actually

gives - 
1
4  , which cancels ⌡⌠

0

1

 x3 dx  = 
1
4  .

In other words, whenever y = f(x) lies below the x-axis, the
definite integral yields the negative of the area so it's quite possible to
have these "negative" areas cancel with "positive" areas to give zero.
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Example: ⌡⌠
0

2π
 sin x dx  = [ - cos x ] 

2π
0   = (- cos 2π) - (cos 0) = -1 +1 = 0 which seems clear since the "area"

from 0 to π is positive while the "area" from π to 2π is negative ... and they cancel.

In the diagram on the right we plot the graph of
some invented function f(x). Note that the "area"
between the curve and the x-axis is sometimes positive,

sometimes negative. We also plot the graph of ⌡⌠
0

x
f(t)dt  

which is zero when x = 0, then increases until x = P (at x
≈ .8) because f(x) is positive so the "area" is increasing.
After x = P, f(x) goes negative so the "area", namely

⌡⌠
0

x
f(t)dt , decreases, until x = Q (x ≈ 1.5) after which

f(x) becomes positive again so the "area" increases
again ... and so on. In fact, after x = R, (x ≈ 1.2) f(x)
becomes so negative that the negative area cancels
completely the positive area accumulated so far, and

⌡⌠
0

x
f(t)dt  goes negative.

All this makes sense even if we didn't have any calculus
or any fundamental theorem. However, we DO have the

fundamental theorem and it says that 
d
dx  ⌡⌠

0

x
f(t)dt  = f(x)

so the derivative of the area function A(x) = ⌡⌠
0

x
 f(t)d t  is

actually f(x) and so it's clear that the graph of A(x) will
have a horizontal tangent wherever f(x) = 0 ... and that's
precisely what happens at P, Q and R!

   

Under what circumstances would you expect ⌡⌠
-L

L
 f(x) dx  = 0? Of course there must be "negative area"

exactly cancelling "positive area" ... but can you predict that, just by inspecting f(x)?
Remember the definition of an ODD function?

If you change the sign of x, you change the sign of f(x).
That is, f(-x) = - f(x). Under these circumstances the
values of the function on -L ≤ x ≤ 0 are just the negative
of the values on 0 ≤ x ≤ L ... and the "areas" cancel.
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How about ⌡⌠
-L

L
 f(x) dx  when f(x) is an EVEN

function? Now the values of f(x) on -L ≤ x ≤ 0 are
exactly the same as those on 0 ≤ x ≤ L so the "areas" are

as well. That is, ⌡⌠
-L

0
 f(x) dx  = ⌡⌠

0

L
 f(x) dx . Hence we          

can write ⌡⌠
-L

L
 f(x) dx  = 2 ⌡⌠

0

L
 f(x) dx   ... which is sometimes very convenient.

Examples: ⌡⌠
-3

3
 x cos x dx  = 0 (because f(x) = x cos x  is ODD)  and

⌡⌠
-π

π

 x2 sin x dx  = 0 (because f(x) = x2 sin x  is ODD)  and

⌡⌠
-1

1

 1 - x2 dx  = 2 ⌡⌠
0

1

 1 - x2 dx  = 2 



1

4 (π12)   where we recognize ⌡⌠
0

1

 1 - x2 dx   as the area

under y = 1 - x2  from x = 0 to x = 1, namely the area of a quarter-circle of radius "1", i.e.   
1
4  π 12. (Note that y =

1 - x2  means that x2 + y2 = 1 ... so we do have a circle).

Let's calculate some areas:
Examples: Calculate the area (in the first quadrant) enclosed by the curves y = x  , y = x.
Solution: First we sketch the two functions so we can see the area:

Then we find the points of intersection (y = x  = x has solutions: (0,0) and (1,1)).
Then we compute the area under y = x   and subtract the area under y = x.

We get  ⌡⌠
0

1

 x1/2 dx   -  ⌡⌠
0

1
 x dx  = [ 

2
3  x3/2]

1
0  - [ 

x2

2   ]
1
0  = 

2
3  - 

1
2  = 

1
6  .

Finally, we check to see if this is reasonable! Note that the area lies within a square of area "1", so it should
be less than this (which it is). In fact, it's clearly less than the area of half this square (since our area lies within the
upper, triangular half) ... and it is. So we have some faith in our answer.

Note, however, that we could have used a property of definite integrals to combine the two integrals and
write our area as:

⌡⌠
0

1

 ( x - x) dx  = [ 
2
3  x3/2 - 

x2

2   ]
1
0  =  

2
3  - 

1
2  = 

1
6  .
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Since it's convenient to think of ⌡⌠
a

b
 f(x) dx  as ⌡⌠

 

 
umming  "elemental" rectangular areas of height f(x) and

width dx (reflecting the origins of the definite integral as the limit of a Riemann SUM), then we can also think of

⌡⌠
0

1

 ( x - x) dx   as ⌡⌠
 

 
umming  elemental areas of height ( x  - x ) and width  dx . We'll do this when convenient.

Indeed, if the required area is enclosed by
curves y = f(x) and y = g(x) as shown, then we imagine
subdividing the area into elemental rectangular areas
located at the place x (somewhere between x = a and
x = b), with width dx and height f(x) - g(x). The

required area is the the ⌡⌠um  of these (beginning with

rectangles at x = a and ending with x = b), yielding the
definite integral:

⌡⌠
a

b
 (f(x) - g(x)) dx 

Example: Compute the first-quadrant area enclosed by y = x, y = 1 and y = sin x.
Solution: First we sketch the area.

Then we find the points of intersection: y = 1 = sin x at
(π/2,1) and y = x = 1 at (1,1) and, of course y = x and y = sin x meet
at the origin. We label these points on our sketch.

Then we imagine the area subdivided into elemental
rectangular areas located at x, of width dx, and height ... well, that's a
problem. When x lies in [0,1], the rectangle rises from y = sin x  to   y
= x so has height (x - sin x) and area (x - sin x) dx. However, for x in
[1,π/2] the rectangle rises from y = sin x and ends on y = 1 hence

        

has area  (1 - sin x) dx. We'll need to find the areas separately:  ⌡⌠
0

1
(x - sin x) dx  + ⌡⌠

1

π/2
(1 - sin x) dx  

= [ 
x2

2   + cos x]
1
0  + [ x + cos x]

π/2
1   = 



 

1
2 + cos 1   - ( ) 0 + cos 0   + 



π

2 + cos 
π
2   - (1 + cos 1) = 

π - 3
2   .

Finally, we check for reasonableness. Our area is certainly
less than the area of the triangle shown and this triangle has area

(1/2) (base) (height) = (1/2) (π/2 - 1) (1) = 
π/2 - 1

2   .

Is  
π - 3

2    < 
π/2 - 1

2   ? Yes, so we have some faith in our answer.

S: Some faith? What does that mean?
P: You'd be surprised how many students will get an answer like 12,473 then go on to the next question, thinking they're

finished.
S: Really? You're kidding. I'd never do that.
P: We'll see.

We've seen that the definite integral (which gives the required area) can be generated by imagining a
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subdivision into elemental rectangles, determining the area of these rectangles, then ⌡⌠umming  from the first

rectangle (at x = a, say) to the last (at x = b, say).
Let's review this technique:
Suppose we want the area enclosed by y = f(x)

and y = g(x). We first sketch the area, then find the
points of intersection by solving y = f(x) and y = g(x)
(two equations in two unknowns). Suppose the
intersections are at (a,c) and (b,d), so the area we seek
lies between x = a and x = b, y = c and y = d, as shown.
Then we subdivide into elemental rectangular areas
located at the place x, of width dx and height f(x) - g(x)
(the upper y-value minus the lower y-value), hence the

area (f(x) - g(x)) dx. Now we  ⌡⌠um   these rectangular

 areas from x = a to x = b via the definite integral:  ⌡⌠
a

b
(f(x) - g(x)) dx  .

S: That's not right, you know. I mean, the height isn't really f(x) - g(x). That's only the height at x, not at x + dx. So how come
it gives the right answer ... or does it?

P: Remember that we got  ⌡⌠
a

b

(f(x) - g(x)) dx    by taking the limit of a Riemann SUM ... not by this gimmick of imagining

elemental rectangles and ⌡⌠umming . We do this "elemental rectangle" business in order to get the definite integral which

represents the area without always having to go back and construct a Riemann SUM ... but I can if you'd like.
S: Sure. Go ahead. I've got lots of time.

P: Okay, we subdivide [a,b] into n subintervals of width h = 
b-a
n   . The   x-

coordinates of the points of subdivision are x=a, a+h, a+2h, a+3h, ...,
a+nh (which is also "b"). On each subinterval we pick a convenient x-
value and compute f(x) - g(x) at that value ... and construct a rectangle
with this height, and width h. For example, suppose that we choose x1
in the first subinterval, x2 in the second and so on. Then f(x1) - g(x1) is
the height of the first rectangle,      f(x2) - g(x2) the height of the
second, etc. Now we construct a Riemann SUM which is the sum of the
areas of all n rectangles:

( )f(x1) - g(x1)   h + ( )f(x2) - g(x2)   h + ...+ ( )f(xn) - g(xn)   h = ∑
k=1

n
( )f(xk) - g(xk) h  (in sigma notation) . Finally we let

n−>∞ (so that h = 
b-a
n   −>0 as well) and define the limit as  ⌡⌠

a

b

(f(x) - g(x)) dx . See? That's the area we're after ... but we

could have gotten to this definite integral by imagining a bunch of "elemental" rectangles of area ( )f(x)-g(x)  dx and ⌡⌠umming  

from x = a to x = b.
S: Actually, the area of your rectangles don't look much like the area we're after. I guess the definite integral is only a good

approximation, right?
P: No, it's exact. I just chose a few subdivisions in my diagram so you can actually see  the individual rectangles. Here, let me

show you what it looks like with 47,000,000 elemental rectangles. See? The elemental rectangles really give a good
approximation ..
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S: Aha! An approximation! Didn't I just say ... ?
P: Wait, it's only an approximation if you take 100 or  47,000,000 rectangles. The error gets smaller as the number of

rectangles goes up. In the limit, as n−>∞, the error goes to zero ... and the definite integral is exactly the area. Anyway,
what's your favourite number?

S: Huh?  ... seven, I guess.

P: Then let's look carefully at the 7th subinterval which goes from x = a +
6h to x = a + 7h and we'll pick a convenient x-value in this subinterval
and called it x7 and construct a rectangle with height f(x7) - g(x7) and
width h. It doesn't look like a very good approximation to the actual
area between f(x) and g(x), but as h−>0 and this rectangle becomes
skinny and the number of such rectangles becomes infinite ... voila! The
SUM of all of them has the correct limit!

S: That's amazing, isn't it? I mean, all those errors ... millions of them ...
and you add them up and they go to zero. You'd think that more
rectangles would give more errors and the approximation would get
worse and worse and ..

P: How big do you think each error is?
S: I haven't the foggiest idea.
P: Let's estimate.  If f(x) and g(x) were constants, then there'd be no error,

but if f(x) is increasing at a maximum rate A  (meaning  y = f(x) is
increasing A times more rapidly than x), then y changes by about Ah
when x changes by an amount h. Similarly, if g(x) is changing at the rate
B (that's g'(x), by the way) then y = g(x) changes by an amount Bh,
roughly. The error in area, for each rectangle, is no bigger than the sum
of the shaded areas, and each is roughly a triangle so we can estimate

using (1/2) (base)(height) and get (1/2)(h)(Ah) = (A/2)h2 and

(1/2)(h)(Bh) = (B/2)h2 which adds up to (A/2+B/2)h2 and putting h=(b-

a)/n  we get (A/2+B/2)(b-a)2/n2. That means that the error in each

triangle is proportional to 1/n2 and  although we have n such triangles
we'd get a total error proportional to 1/n which does go to zero as n−>∞.
Nice, eh?

S: Triangles? Did you say the shaded areas were triangles? But ...
P: No, no ... they're approximately triangles. It's like assuming that f(x) and g(x) were replaced (for purposes of this estimation)

by their linear, tangent line approximation ... surely you remember the linear approximation? Besides, triangles sometimes
come in handy for estimating. Here, let me give you a problem you can't solve but which you can estimate, using triangles.
Ready? There is this train track and it's one long piece of steel 1,000 metres long and it's pinned down at each end so the
ends can't move. Then it gets hot and the increased temperature expands the metal by 2 metres and the track buckles in the
centre. Got the picture?

S: A picture is worth ..

         

P: Okay, here's the picture. My question is: how much does it buckle in the
centre? If we call it "h" then we can estimate this using a triangle. See

the triangle? We have h2 + 5002 = 5012 (using Pythagorus) so h2 =

5012 - 5002 = 1001 so h = 1001  ≈ ... uh, did you bring your
calculator?

S: Nope.

P: Okay, we'll do a linear approximation on this one. Let's see ... 1001 is pretty close to 900 which is 302, but 312 is 961 so I'll

use it and get the tangent line to x  at x = 961. That's f(961) + f ' (961) (x - 961) and for f(x) = x1/2, we have f ' (x) = 1/2 x   

so  f(961) + f ' (961) (x - 961) = 961  + 
1

2 961
 (x - 961)  = 31 + 

x-961
62    so x  ≈ 31 + 

x-961
62    when x is close to 961. I plug
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in x = 1001 and get 1001  ≈ 31 + 
40
61  ≈ 31.6 which is good enough for me.

S: For me too. (I hope he doesn't mean 31.6 metres!?) Say, do I have to know this for the final exam?
P: Train tracks? No. Linear approximation? Yes. Now pay attention, because if you're satisfied that this "elemental rectangle"

gimmick gives the correct definite integral, then I'll show you something really neat.
S: I can hardly wait.

We consider the same problem as above: the area enclosed by y = f(x) and y = g(x). Rather than subdividing
the area into vertical "elemental rectangles" (located at x, between x = a and x = b), we subdivide into horizontal
"elemental rectangles"  ... located at y between y = c and y = d.

To find the area of this horizontal rectangle we use
(width) (height) where the height is just dy and the
width is the "right x-value" minus the "left x-value".
That means we need to solve y = f(x) for x in terms of y
... and y = g(x) for x in terms of y. Suppose this gives
x = F(y) and x = G(y) respectively. Then, for the
rectangle located at "y", the width is G(y) - F(y) so the
area of this "elemental rectangle" is ( )G(y) - F(y)   dy

and ⌡⌠umming  all such rectangles, from y = c to y = d

gives the definite integral:  ⌡⌠
c

d

( )G(y) - F(y)  dy  

Example: Calculate the area enclosed by y = x and y = x  using horizontal rectangles.
Solution: We first sketch the curves and identify the area. Then we find the points of intersection by solving
y = x and y = x (and get (0,0) and (1,1)) . Then we imagine a single, typical horizontal elemental rectangle located
at y, with height dy, and compute its area. For a given y we need to
know the right x-value and the left x-value which means we need to
solve y = x and y = x   for x in terms of y; that's easy. x = y and     x

= y2. Hence our horizontal rectangle has area (y - y2) dy and we ⌡⌠um  

all such areas from y = 0 to y = 1 and get  ⌡⌠
0

1

(y - y2) dy  

= [
y2

2   - 
y3

3   ]
1
0  = 

1
2  - 

1
3  = 

1
6   and (surprise!) it's the same area as we

computed using vertical rectangles.

     

S: So why use horizontal rectangles at all?
P: I knew you'd ask that. Sometimes it's easier. Let's go back to the area enclosed by y = x, y = 1 and y = sin x. We sketch the

curves, find the points of intersection (we've already done that, earlier) and, knowing that we're going to use
horizontal rectangles we immediately solve for x in terms of y. It's
fortunate that we've already considered the arcsine function because
y = sin x, solved for x, gives x = arcsin y (the inverse function,
remember?). Okay, now we sketch a typical horizontal rectangle located
at "y", between y = 0 and y = 1. Its area is:

 (xright - xleft) dy = (arcsin y - y) dy  and ⌡⌠umming  all such rectangles

gives the definite integral:  ⌡⌠
0

1

(arcsin y - y) dy  . Nice, eh?
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If you look back at this problem when we used vertical rectangles, we had to divide the x-interval into two pieces:         0 ≤ x
≤ 1 and 1 ≤ x ≤ π/2 because the expression for elemental area changed. But horizontal rectangles always go from the line x =
y to the curve x = arcsin y, so there's one integral to evaluate instead of two!

S: But how would you find the antiderivative of arcsin y? I mean, what's ⌡⌠
0

1

arcsin y dy  ?

P: Uh ... good question. You'll have to wait till later.
S: Thanks.

Example: Find the area enclosed by y = arctan x, y = 
π
4   and the tangent line to y = arctan x at x = 0.

Solution: The tangent line has slope 
dy
dx  = 

d
dx  arctan x = 

1
1+x2   = 1, at x = 0 and y = arctan 0 = 0 (when

x = 0) so it's 
y - 0
x - 0  = 1 or simply y = x. Now we sketch the curves y = arctan x, y = 

π
4  and y = x, identify the area, and

find
the points of intersection: y = x intersects y = π/4 at
(π/4,π/4) and y = arctan x intersects y = π/4 at (1,π/4)
and, of course, y = x and y = arctan x intersect at (0,0).
Now we draw a typical horizontal rectangle located at
"y", between y = 0 and y = π/4. Its height is dy and its
width is (xright - xleft) so its area is:            

(tan y - y) dy  and ⌡⌠umming  gives:

 ⌡⌠
0

π/4
(tan y - y) dy  = [ln |sec y| - 

y2

2   ]π/4
0   = 



ln |secπ/4| - 

1
2 


π

4
2

  - ( )ln |sec 0| - 0   = ln  2  - 
π2

32  .

S: Hah! You didn't check for reasonableness!
P: Okay. Checking for reasonableness, we compare to the area of the triangle (which looks much like the shaded region in the

diagram): (1/2) (base) (height) = (1/2) (1 - π/4) (π/4) which is roughly (1/2) (1 - 3/4)(3/4) = 3/32 ≈ .1 whereas

ln  2  - 
π2

32    is roughly ... uh ... well ...

S: Gotcha!
P: I'll use the linear, tangent line approximation to estimate ln 2  .  Let's see ... 2  is near 1, so I'll find the tangent line to y =

ln x  at  x = 1 and that has a slope of 
d
dx  ln x = 

1
x   = 1 (at x = 1) so the line is  

y - ln 1
x - 1    = 1 and that's y = x - 1 (since I know

that ln 1 = 0) and putting x = 2  , I estimate ln 2  ≈ 2  - 1 and I know that 2  is roughly 1.4 so I get ln 2  ≈ .4 and

subtracting 
π2

32  ≈ 
10
32  ≈ .3, I get  .1  which checks out and now you're really impressed, right?

S: zzzzz ... uh, say ... you seem to be fond of approximations. Everything is an approximation. Isn't anything exact in math?
P: Sure, but what would you do with the exact value of 2  for example. As a decimal it has an infinite number of digits. Do

you really want to see them all? We can use Newton's method to get, say, a million digits and that should be good enough.
Besides, sometimes approximate answers can give exact results when you use limits. We've already seen that haven't we?
From the Riemann SUM, which is an approximation, we take a limit and get the area under the curve exactly.

S: Can't we just go on?
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LECTURE 16

AREAS IN POLAR COORDINATES

In order to compute the area enclosed by curves in rectangular coordinates (y = x , y = arcsin x, x = a,

x = π/4 and curves like that) we subdivide into elemental rectangles and ⌡⌠um  using the definite integral. In order to

compute the area enclosed by curves in polar coordinates (r = cos θ, r = θ, r = 3 + 4 sin θ and curves like that) we do
a similar thing ... except that rectangular "elemental areas" are now inappropriate. To see what is appropriate, let's
repeat the prescription for finding the area "under" y = f(x) (i.e. from y = 0 to y = f(x)) from x = a to x = b ... except
we'll word it slightly differently so we can repeat it for polar coordinates:

(1) Subdivide a ≤ x ≤ b into n subintervals of length h = 
b - a

n   .

(2) On each subinterval pick a convenient value of x, say xk on the kth

subinterval, and assume y = f(x) is constant at the value f(xk) over the kth

subinterval.
(3) Determine the area from y = 0 to y = f(xk), on the kth subinterval.
(4) Sum all such areas to get a Riemann SUM.
(5) Take the limit at n−>∞ and hence h−>0.
(6) This limit (assuming there is a limit) is the required AREA.

     
Now, in polar coordinates:

(1) Subdivide a ≤ θ ≤ b into n subintervals of length h = 
b - a

n   .

(2) On each subinterval pick a convenient value of θ, say θk on the kth

subinterval, and assume r = f(θ) is constant at the value f(θk) over the kth

subinterval.
(3) Determine the area from r = 0 to r = f(θk), on the kth subinterval.
(4) Sum all such areas to get a Riemann SUM.
(5) Take the limit at n−>∞ and hence h−>0.
(6) This limit (assuming there is a limit) is the required AREA.

  
The difference is in step (3) where the "elemental area" is a sector of a circle rather than a rectangle (and

this seems appropriate for polar coordinates, right?). To deduce this area (in case you haven't memorized such) we

recall the area of a circle of radius r:  π r2. If we take just a fraction of this area, say the fraction 
h

2π  , then we get the

area of a sector where the central angle is "h" (instead of "2π"). Hence the sector has area 



h

2π  π r2 = 
1
2  r2 h  and

that's what we use for the elemental area. The Riemann SUM would be ∑
k=1

n

 
1
2 f2(θk) h  and its limit would become

the definite integral:   ⌡
⌠

a

b

 
1
2 f2(θ) dθ    rather than ⌡⌠

a

b
 f(x) dx  .
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The area enclosed by r = f(θ), θ = α  and  θ = β  is given by:  
1
2 ⌡⌠
α

β
 f2(θ) dθ 

S: So how come you switched from a, b to α, β?
P: Everybody uses Greek letters for angles ... didn't you know that? Pay attention:

 It's important to regard 
1
2 ⌡⌠
α

β
 r2 dθ   as the AREA SWEPT OUT BY THE RADIUS r = f(θ) as θ goes from

θ = α to θ = β. To emphasize this point we'll sketch some polar curves and shade the area which 
1
2 ⌡⌠
α

β
 r2 dθ  gives:

Here, the polar curve r = cos θ is traversed once when

θ goes from 0 to 
π
2   ... or from - 

π
2  to 

π
2  

Here the integral
Error!

Here the limaçon reaches r = 0 when θ = 
2π
3   so

1
2 ⌡⌠

π/3

2π/3

 r2 dθ  gives the area shown.

Here r traces out the inner loop as θ goes from 
2π
3   to 

4π
3   

so 
1
2 ⌡⌠

2π/3

4π/3

 r2 dθ  gives the area of this inner loop.

It's important to note that, for example, 
1
2 ⌡⌠

0

2π

 cos2θ dθ  would give twice the area of the circle and
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1
2 ⌡⌠

0

2π

 (1+2 cosθ)2dθ  will give the area within the limaçon with the inner loop counted twice!

Remember the diagram ===>>>

Example: Express, as a definite integral, the area
enclosed by the curve r = cos2θsin θ.

Solution: We sketch the curve (a lemniscate ...
we've done this one before ...) and
observe that the curve is traversed in
its entirety when θ goes from 0 to π
(and no more!). The area swept out is
given in the diagram.

S: I'm not sure I get this "swept out" business. Sounds like a broom or ...
P: Pay attention: you imagine the radius r as a straight line from the origin to a point on r = f(θ). Then, as θ changes, this

straight line sweeps out an area. That can't be hard to understand. In fact, one of Kepler's three laws of planetary motion says
that the area swept out is the same for any given time period. Here the origin is the sun and a planet is revolving about the
sun along some path r = f(θ) and each month (or day or year) the area swept out is the same and that means that when the
planet is close to the sun and r is small it must be travelling quickly whereas when r is large it travels slowly so as to keep
the area swept out the same for ... are you listening?

S: zzzz

Example: Find the area outside r = 2 + 2 cos θ but inside r = 1.
Solution: We sketch both polar curves and find the points of intersection by solving r = 2 + 2 cos θ = 1. This

gives cos θ = - 
1
2   so θ = 

2π
3   and θ = 

4π
3   .

Now the integral 
1
2 ⌡⌠

2π/3

4π/3

(2+2cosθ)2dθ  will give the area swept out as "r" traces the limaçon while

 
1
2 ⌡⌠

2π/3

4π/3

 12 dθ  gives the area swept out when r traces out the circle. We want the difference:
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1
2 ⌡⌠

2π/3

4π/3

 12 dθ  - 
1
2 ⌡⌠

2π/3

4π/3

(2+2cosθ)2dθ  = - 
1
2 ⌡⌠

2π/3

4π/3

 ( )3+8cosθ+4cos2θ  dθ . Put cos2θ = 
1+cos2θ

2   and get

- 
1
2 ⌡⌠

2π/3

4π/3

(5+8cosθ+2cos2θ) dθ  = - 
1
2  [5θ+8sinθ+sin2θ]

4π/3
2π/3  = - 

1
2



20π

3 +8



-

3
2 +

3
2  -

1
2



10π

3 +8
3

2 - 
3

2   = 
7
2 3  - 

5π
3   

S: Reasonableness! Reasonableness!
P: You check it for reasonableness.
S: Huh? Well ... let's see ... are there any triangles around?

How about this one  =====>>>  ?
The base is 1 and the height is ... y = r sin θ  and that's ...
uh, (1) sin (2π/3) = sin 120˚ = 3 /2 so the area is
1
2 (1) ( 3/2)  = 3 /4, right? And 3  is maybe 1.5 or

something so I get .4 or something. Good?
P: How does that compare with the exact answer?       

S: The exact answer is  3.5 3   - 5π/3 and that's about (3.5)(1.5) - (5)(3)/3 = 5.25 - 5 = .25 which is way off ... so your answer
is wrong!

P: You said 3  is maybe 1.5, but it's about 1.73 so that'd change your 3 /4 estimate to about .43 and the exact answer to
about .86 and ...

S: See? You are wrong!
P: ... and you only estimated the upper half of the area so if I double your estimate I'd get ...
S: Hey, it's .86, right on the button! See?
P: Hmmm. Now if you only had me around when you write your final exam.

LECTURE 17

TECHNIQUES OF INTEGRATION

We collect those "indefinite" integrals which we already know (and which you should remember!):

⌡⌠xn dx  = 
xn+1

n+1   + C (n ≠ -1) ⌡⌠eax dx  = 
eax

a   + C (a ≠ 0) ⌡
⌠dx

x   = ln | x | + C

⌡⌠sin x dx  = - cos x + C ⌡⌠cos x dx  = sin x +C ⌡⌠tan x dx  = ln | sec x | +C

⌡⌠sec x dx  =ln | sec x + tan x | + C   
⌡
⌠ dx

a2+x2  = 
1
a  arctan 

x
a  + C

⌡
⌠ dx

a2-x2
  = arcsin 

x
a  + C

We could add to this list by differentiating a great number of functions then we'd know the antiderivatives

of the answers. i.e. since 
d
dx (x ln | cos x |)  = x 



1

cos x (- sin x)   + ln  | cos x | = - x tan x + ln | cos x |

then ⌡⌠( )- x tan x + ln | cos x | dx  = x ln | cos x | + C. However, we need a more systematic way of evaluating

integrals (and we'll say "integrals" and mean "indefinite integrals" unless otherwise indicated).
Note, however, that every formula for differentiation will yield a formula for integration (and, again, we

mean "indefinite" integration unless otherwise indicated). For example we have 
d
dx ( )f(x) + g(x)   = f '(x) + g '(x) so
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we have the integration formula:  ⌡⌠( )f '(x) + g '(x)  dx  = f(x) + g(x) + C  ... not too exciting.

THE METHOD OF SUBSTITUTION:

As a "Differentiation Rule" we also have the Chain Rule:  
d
dx  f(u) = f '(u) 

du
dx   where u is some

(differentiable!) function of x. This gives the "Integration Rule":  ⌡
⌠




f '(u) 

du
dx  dx  = f(u) + C, which, if we could

understand what it's saying, looks pretty interesting.

Note: if we replace 
du
dx   dx  by  du (as though we were "cancelling the dx", the above result reads:

⌡⌠f '(u) du  = f(u) + C  which is pretty obvious (i.e. f(u) is clearly the antiderivative of f '(u) !) ... so maybe the Chain

Rule is of little value, but then again, this rule works for any differentiable functions f & u so maybe there's
something to it ... so we should try a few  f's and u's.

• If f(u) = sin u then ⌡
⌠cos u 

du
dx dx  = sin u, for any (differentiable) function "u". If u = x2, we get:

⌡⌠cos x2 2x dx = sin x2 + C  .

• If f(u) = eu and u = sin x we get the result ⌡⌠esinx cos x dx = esinx + C  .

• How to identify the function "u", given an integral to evaluate:  ⌡⌠F(x) dx  ?

Look for a function of x whose derivative is "next to dx" (i.e. is a factor of integrand), and let u = this function!!

That's the method of substitution we'll talk about:

• I = ⌡⌠cos x2 2x dx  = ?  Let u = x2 (since its derivative, 2x, is "next to dx"), so 
du
dx  = 2x hence du = 

du
dx  dx =

2x dx. Now write I = ⌡
⌠cos u 

du
dx dx  = ⌡⌠cos u du  = sin u +C = sin x2 + C  (as obtained above). Note: normally

the indefinite integral would most likely arise as

⌡⌠x cos x2 dx (without the "2" and without the x being "next to dx") , so you could rewrite it as 
1
2  ⌡⌠cos x2 2x dx  

, or simply ignore constant multipliers and set u = x2,     du = 
du
dx  dx = 2x dx so 

1
2  du = x dx  giving ⌡⌠x cos x2 dx  

= 
1
2 ⌡⌠cos u du   etc.

• I = 
⌡
⌠sin x

x
 dx  = ?  Note that u = x  has derivative 

1
2 x

   which (except for a constant factor "2") can be
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placed "next to dx" (i.e. is a factor of the integrand). Then put u = x    and  du = 
du
dx  dx = 

1
2 x

  dx

so put  
1
x
  dx = 2 du, giving I = ⌡⌠sin u 2 du  = - 2 cos u + C = - 2 cos x  + C.

•   ⌡
⌠ln x

x  dx  = ? Let  u = ln x   (its derivative, 
du
dx  = 

1
x  , is a factor of the integrand) and du = 

du
dx  dx = 

1
x  dx  and

reduce this tough integral to simply ⌡⌠u du  = 
u2

2   + C = 
ln2x

2   + C.

•
⌡
⌠ x

1+x2 dx  = ? Let u = 1+x2 (its derivative, 2x, is a factor of the integrand ... except for the "2" which we ignore

... it'll appear, soon) then du = 
du
dx  dx = 2x dx hence 

1
2  du =  x dx  and get: ⌡


⌠1

2 du

u   = 
1
2  ln |u| + C

= 
1
2  ln (1+x2) + C and we conclude that  

⌡
⌠ x

1+x2 dx  = = 
1
2  ln (1+x2) + C ... which we can verify by noting that

d
dx



1

2 ln (1+x2) + C   = 
x

1+x2  .

•   
⌡
⌠ x

x2+1
 dx  = ? Let  u = x2+1  (its derivative, 

du
dx  = 2x , is a factor of the integrand ... except for the "2"

which we ignore ... it'll appear, soon) then du = 
du
dx  dx = 2x dx hence 

1
2  du =  x dx  and get: 

⌡

⌠1

2 du

u
  = 

1
2 ⌡⌠u-1/2 du  

= 
1
2 

u1/2

1/2   + C = u1/2 + C = x2 + 1  + C.

• ⌡⌠ ex tan(ex) dx  = ? Let u = ex  (its derivative, 
du
dx  = ex , is a factor of the integrand) and get ⌡⌠tan u du  

= ⌡
⌠sin u

cos u du    so now let v = cos u  (its derivative, 
dv
du  = - sin u , is a factor of the integrand)  and get ⌡

⌠- dv
v   =  -

ln | v | + C = - ln | cos u | + C = - ln | cos ex | + C (which, of course, we should verify by differentiation).

•  ⌡⌠sec2(sin x) cos x dx  = ?  Let u = sin x so du = 
du
dx  dx = cos x dx and we get  ⌡⌠sec2u du  = tan u + C

= tan (sin x) + C.

• ⌡
⌠ 1

ln x 
1
x dx  = ?  Let u = ln x  then du = 

du
dx  dx = 

1
x  dx and we get  ⌡

⌠1
u du  = ln | u | + C = ln  |ln x | + C.

•  ⌡⌠esin x2 2x sin x2 dx  = ?  Let u = sin x2 then du = 
du
dx  dx = 2x sin x2 dx and we get  ⌡⌠eu du  = eu + C

= esin x2 + C.

If we inspect the integrals that we've been able to evaluate with this "rule", then we see that there is always
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some function appearing in the integrand and the derivative of this function also appears there, right beside the "dx". 
If you can find a function in the integrand (call it g(x)) whose derivative is also in the integrand "next to dx"

(that is, 
dg
dx  dx is also there, under the ∫-sign ) i.e. the integral has the form

⌡⌠{some hairy function involving g(x)} g'(x) dx   then let u = g(x) and replace g(x) wherever it occurs in the

integrand by u (which will certainly make for a simpler integrand!) AND replace 
du
dx  dx = 

dg
dx  dx by du (and that

simplifies things even further!). The resultant integral will have the form ⌡⌠H(u) du (where "H" is the hairy function)  

and be easier to integrate ... usually. Just remember:

After substituting u = g(x) and du = g'(x) dx, replace every  "x" by the appropriate function of "u"  

• ⌡
⌠x2+1

x+1  dx  = ?  Let u = x + 1  so du = 
du
dx  dx = (1) dx = du and get ⌡

⌠x2+1
u  du  but we haven't got rid of all the

x's yet, so we note that x = u - 1 and get, finally, ⌡
⌠(u-1)2+1

u  du  = ⌡
⌠(u - 2 +

2
u ) du  = 

u2

2   - 2u + ln | u | + C

= 
1
2 (x+1) 2 - 2(x+1) + ln  | x+1 | + C.

• ⌡⌠ .. 

S: Hold on a minute. I don't get this at all. You can do a million examples and I still wouldn't get it. How can you let

u = something then let du = 
du
dx  dx ? Are you cancelling the dx's, is that what you're doing? That isn't legal ... is it? I mean ...

P: Okay, that's a fair question. But remember, you can always check the answer by differentiating. If I say that

⌡
⌠x2+1

x+1  dx  = 
1
2 (x+1) 2 - 2(x+1) + ln  | x+1 | + C, then just differentiate the right-side and see if you get 

x2+1
x+1   . See?

S: Aren't I supposed to understand what I'm doing or am I just supposed to turn some crank and out pops ...

P: Look here. I said that this arises from the Chain Rule:  
d
dx   f(u) = f ' (u) 

du
dx   which is equivalent to

 ⌡⌠f ' (u) 
du
dx dx  = f(u) + C. See the 

du
dx  dx  in the integrand? Good. Now watch this. We'll change it into just du. It's clear that

⌡⌠f ' (u) du  = f(u) + C, right? (After all, if you differentiate f(u), then integrate it, you get back to f(u) ... except for a constant

C.) Okay, this means that  ⌡⌠f ' (u) 
du
dx dx  = ⌡⌠f ' (u) du    and now see what's happened to the 

du
dx  dx ? It's now just du, so we

bypass this rigmarole and simply replace  du  by 
du
dx  dx ... which is precisely what we've been doing.

S: And if I don't like it, I can just differentiate the right-side to prove it, right?
P: Sure. Remember, differentiation is a SCIENCE but integration is an ART ... perhaps a black art. Besides, checking your

answer is what we like to do anyway, right? Besides, you can't argue with success ... and we've been pretty successful in
evaluating the above integrals. Did I ever tell you the story of Oliver Heaviside?

S: Oh no, please don't.
P: This is interesting ... and won't be on the final exam, I promise. Heaviside was an electrical engineer who lived about the

turn of the century (the 20th century). He invented a scheme for solving the darndest problems; it's called the Heaviside
calculus. Mathematicians scoffed: "You can't do this!" and  "How do you justify that?" and so on. His response? "Check my
answer. It works."

S: I'm afraid to ask ... but give me an example.

P: Well ... let's see. Suppose we use the notation Dy in place of 
dy
dx  , and D2y in place of 

d2y

dx2  , and so on. Then we see that

Deax = a eax and D2eax = a2eax and, continuing, D100eax = a100eax so we can just replace D by "a" and get the
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umpteenth derivative of eax: Dn eax = an eax  . "Just replace D by a". That's a Heaviside Rule. Also, if we use the notation

(D+2) eax we'd mean D eax + 2 eax = (a + 2) eax and (D+2)2eax would mean (D+2)(D+2)eax = (D+2)((a + 2) eax) =

(performing the differentiation) = (a2 + 2a + 4) eax which is precisely (a+2)2eax. In other words, (D+2)2eax = (a+2)2eax

and again we just replace D by "a". You can check it out for yourself. (D+2)3eax = (a3 +6a2+24a +8)eax = (a+2)3eax and

(D+2)n eax = (a+2)n eax   so on.

S: That's Heaviside calculus?

P: Part of it. Pay attention. Now we do something different. Suppose we differentiate a product. That is, we perform    D(eax

u(x)) where u(x) is some function of x. According to the PRODUCT rule we'd get  D(eax u) = eax u' + a eax u or, using our

slick D-notation, we'd get: D(eax u) = eax (u' + a u) which we'd write as D(eax u) = eax (D+a) u. Similarly D2(eax u) = eax

(u'' + 2a u' + a2u) = eax (D+a)2u. See the rule now? No? One more time then. We differentiate eax u three times and we'd

get a factor eax in every term which we'd factor out and get: eax(u''' + 3a u'' + 3a2 u' + a2 u) which is precisely eax(D3u

+3aD2u +3a2Du +a2u) which is precisely eax(D+a)3u. Now you see the rule:

 Dn(eaxu(x)) = eax(D+a)n u(x)   which is called the Heaviside Shift Theorem. The eax gets shifted to the left, past the D,

and "a" gets added to D leaving the operation (D+a)n to be performed on the function u(x).
S: That's Heaviside calculus?

P: Listen! There's more! Now if Dy means 
dy
dx   then 

1
D  y  should mean ... what? Well, whatever 

1
D  y means, when we

differentiate it via D ( )
1
D y   we should get y, right? After all, we just "cancel the D's". That means that 

1
D  y must be

nobody else but ⌡⌠y dx  . Now, if we perform the operation 
1
D  eax we get ⌡⌠eax dx  = 

eax

a   (and we'll ignore the +C)  then if

we perform that operation again we'd get  
1
D 

1
D  eax = 

1

D2  eax = 
eax

a2  (again ignoring the constant of integration) . See? Just

replace D by "a". Now comes the good part.
S: Can I go now?

P: The best is yet to come! We want to evaluate  ⌡⌠exx2 dx   which Heaviside would write as  
1
D  ex x2 and then he'd use his

Shift Theorem to get ex 
1

D+1  x2 (where we "shifted the ex" and "added 1 to D"). What to do with 
1

D+1  x2? Well, we can

divide D + 1 into 1 by long division (either that, or recognize 
1

1+D   as the sum of a geometric series with first term "1" and

common ratio -D ). In any case we'd get:⌡⌠exx2 dx  = 
1
D  ex x2 = ex 

1
D+1  x2 = ex ( )1 - D + D2 - D3 +...   x2

= ex ( )x2 - 2x + 2 - 0 + 0 ...    where we performed the indicated differentiations on x2 and we'd conclude that

⌡⌠exx2 dx  = ex ( )x2 - 2x + a2   + C  and we finally added the "C".

S: You gotta be kidding. Can you really do all that?
P: As Oliver would say: "Check my answer. It works."
S: Can we get back to "let u = this and du = that"?
P: First, I have one more technique to show you ... for evaluating indefinite integrals. This is perhaps the most important

technique available and it's really very nice.

INTEGRATION BY PARTS:

We consider one last "Differentiation Rule", hoping it will result in an "Integration Rule" ... and the rule we

consider is a familiar one: 
d
dx  uv = u 

dv
dx  + v 

du
dx  (the Product Rule for differentiation) . Integrating both sides with

respect to x, we get an "Integration Rule": ⌡
⌠




d

dx uv  dx  = ⌡
⌠




u 

dv
dx  dx  + ⌡

⌠




v 

du
dx  dx  . Now stand back. By
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⌡
⌠




d

dx uv  dx   we mean a function which, when differentiated, yields 
d
dx  uv and that's clearly uv itself. Our

"Integration Rule" then becomes: uv = ⌡
⌠




u 

dv
dx  dx  + ⌡

⌠




v 

du
dx  dx   which we can rearrange to read:

 ⌡
⌠u 

dv
dx dx = uv - ⌡

⌠v 
du
dx dx  . Before we say anything else, let's substitute some functions for u and v and see if this

"Rule" is getting us anywhere.

Examples:

• Let u = x and v = sin x. Then we substitute  
du
dx  = 1 and 

dv
dx  = cos x  and ⌡

⌠u 
dv
dx dx  = uv - ⌡

⌠v 
du
dx dx  becomes:

⌡⌠x cos x dx = x sin x - ⌡⌠sin x (1) dx   which is very nice because ⌡⌠sin x dx  is easy, so we get

⌡⌠x cos x dx  = x sin x + cos x + C, and we can verify that we do indeed have the antiderivative of x sin x

because 
d
dx (x sin x + cos x + C)  = x sin x.

• Let u = x2 and v = sin x. Then we substitute  
du
dx  = 2x and 

dv
dx  = cos x  and ⌡

⌠u 
dv
dx dx  = uv - ⌡

⌠v 
du
dx dx  becomes:

⌡⌠x2 cos x dx  = x2 sin x - ⌡⌠sin x (2x) dx   or  ⌡⌠x2 cos x dx = x2 sin x - 2 ⌡⌠x sin x dx  . In other words, we've

replaced the problem of evaluating ⌡⌠x2 cos x dx  by the problem of evaluating the simpler integral

⌡⌠x sin x dx   but, of course, we've already evaluated this one by the same technique so we can write, finally:

 ⌡⌠x2 cos x dx  = x2 sin x - 2( )x sin x + cos x   + C  (adding the C after the last integral sign has gone).

• Let u = arctan x  and v = x, so 
du
dx  = 

1
1+x2   and  

dv
dx  = 1 so the "Rule" ⌡

⌠u 
dv
dx dx  = uv - ⌡

⌠v 
du
dx dx  becomes:

⌡⌠arctan x dx = x arctan x - 
⌡
⌠ x

1+x2 dx   = x arctan x - 
1
2  ln (1+x2) + C (where we put 

⌡
⌠ x

1+x2 dx  =

1
2  ln (1+x2) because we've already done this one, earlier, using our method of substitution).

S: Please, no more! Are you really thinking about starting with this ... this "Rule",⌡⌠u 
dv
dx dx  = uv - ⌡⌠v 

du
dx dx  , then just

plugging in functions for u and v and seeing what we get? I mean, is that what I'm supposed to ...
P: I just want to check to see if this Integration Rule which derives from the Product Rule for differentiation is going to be

useful ... and we can see that it is, because how else would you integrate arctan x? In general, you'll run across ⌡⌠arctan x dx  

and you'll have to figure out what is u and what is v and ...
S: You're kidding, right? I mean, you already knew the answer ... who's u and who's v ... then you invented the integral, yet you

expect me to start with the integral and ...
P: Okay, that's a fair comment, so let's look at our new Integration Rule ... carefully:
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INTEGRATION BY PARTS FORMULA

⌡
⌠u 

dv
dx dx  = uv - 

⌡
⌠v 

du
dx dx 

Comments:

• The original integral, having the form ⌡
⌠u 

dv
dx dx , is replaced by uv - ⌡

⌠v 
du
dx  which involves another integral ...

hopefully simpler than the original! But we have done a partial integration, because "uv" has come out from

under an ⌡⌠  sign ... so this technique is called INTEGRATION by PARTS.

• The original integral involves the integration of a certain product : ( )u 



dv

dx    ... which, in our examples above,

were x cos x or x2 cos x or (1) arctan x. After applying the Integration by Parts formula given above, we are still

left with an integral, but now the two factors (u) and 



dv

dx   reappear transformed: the first factor, (u), reappears

differentiated, 



du

dx  , whereas the second factor, 



dv

dx  , reappears integrated, (v), giving the remaining integral

⌡
⌠(v)



du

dx  dx . This transformation gives us the clue as to who's u and who's v. In fact, we want to choose them

so the remaining integral is simpler.
• Since "u" reappears differentiated, we let u = the factor we want to reappear differentiated. What's left in the

original integrand must then be 
dv
dx  .

Examples: (a) ⌡⌠x ln x dx  = ? (b) ⌡⌠x arctan x dx  = ?

Solutions:
(a) Since ln x is a frightening (transcendental) function with a very nice derivative, we let u = ln x (because

we'd rather have the derivative 
du
dx  = 

1
x  ). That means that 

dv
dx  = x so v =

x2

2  (and this will show up in the remaining integral, along with  
du
dx ) . Having identified all four players in this drama:

u, 
du
dx  , v and 

dv
dx  , we can substitute into the Integration by Parts formula ⌡

⌠u 
dv
dx dx  = uv - ⌡

⌠v 
du
dx   to get:  ⌡⌠ln x x dx  

= ( )ln x  



x2

2   - ⌡
⌠x2

2  
1
x dx  

= 
x2

2   ln x - 
1
2 ⌡⌠x dx   and you must admit that the remaining integral is pretty easy. Finally, then,

⌡⌠x ln x dx  = 
x2

2   ln x - 
x2

4   + C (which we can verify by differentiating the right-side, to get x ln x).

(b) In ⌡⌠x arctan x dx  , the function arctan x has a "nice" derivative so we let u = arctan x, hence 
dv
dx  must be x

(since the original integrand must be u 
dv
dx  so if we know u we also know 

dv
dx  ). We need all four of u, v, 

du
dx  and 

dv
dx  

so we calculate 
du
dx  = 

1
1+x2 (the "nice" derivative)  and v = 

x2

2   . Substituting into the "Formula" we get ⌡⌠x arctan x dx  
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= ⌡
⌠u 

dv
dx dx  = uv - ⌡

⌠v 
du
dx dx  = 

x2

2   arctan x - 
1
2 
⌡
⌠ x2

1+x2 dx . We pause long enough to evaluate the remaining

integral: 
⌡
⌠ x2

1+x2 dx  = 
⌡
⌠x2+1 - 1

1+x2  dx  = 
⌡
⌠




1 - 

1
1+x2  dx  = x - arctan x so we finally get:

⌡⌠x arctan x dx  =  
x2

2   arctan x - 
1
2 (x - arctan x)  + C.

S: Whoa! What happened there? I mean, 
x2

1+x2  = 
x2+1 - 1

1+x2 
   and all that jazz?

P: Cute, eh? I just added and subtracted "1" from the numerator, then split it up into two pieces, each being easy to integrate,

namely 
x2+1

1+x2 (which, in case you didn't know, is "1")  and 
1

1+x2   whose integral I've memorized. Do you like that?

S: No! Besides, you said you let u = arctan x because it has a "nice" derivative. There's another factor in ⌡⌠x arctan x dx  and

it's x and it has an even "nicer "derivative so I'd let u = x.

P: And what does that leave for 
dv
dx  ?

S: Huh?

P: The original integrand is x arctan x  which is u 
dv
dx  . If u = x, then 

dv
dx   must be arctan x. Hence, to find v itself, you'd have to

integrate arctan x. See? My way, letting u = arctan x, eliminates the need for integrating arctan x.

S: But we know ⌡⌠arctan x dx  from an earlier example ... it's ... uh, x arctan x - 
1
2  ln (1+x2), so doing it my way, I'd let       u =

x and 
dv
dx   = arctan x so 

du
dx  = 1 and v = ⌡⌠arctan x dx  = x arctan x - 

1
2  ln (1+x2) and I'd use the magic integration-by-parts

formula and get: ⌡⌠x arctan x dx  = x( )x arctan x - 
1
2 ln (1+x2)   - ⌡

⌠( )x arctan x - 
1
2 ln (1+x2) dx   ... mamma mia, that's

not so nice ... uh, I leave it as an exercise for the prof.

It is convenient, for purposes of "memorizing the formula", to rewrite ⌡
⌠u 

dv
dx dx  = uv - ⌡

⌠v 
du
dx dx   in the

form  ⌡⌠u dv = u v - ⌡⌠ v du   where we've replaced  
dv
dx  dx  by dv  and  

du
dx  dx  by du. (We've done this

replacement before, in our "method of substitution".) Although easier to remember, I don't think it's easier to use!

Example: ⌡⌠x2 ln x dx  = ?

Solution: Let u = ln x, then 
du
dx  = 

1
x  . What's left under the integral sign is x2 dx which must be dv, that is, dv

= x2 dx so v = ⌡⌠x2 dx  = 
x3

3   . Now we use ⌡⌠u dv  = uv - ⌡⌠v du  and get ⌡⌠x2 ln x dx  = ln x 



x3

3   - ⌡
⌠




x3

3  
1
x dx  =

x3

3   ln x - 
x3

9   + C (which, as usual, can be verified by differentiating the right-side to get x2 ln x).

S: I like ⌡⌠u dv  = uv - ⌡⌠v du  much better than ⌡⌠u 
dv
dx dx  = uv - ⌡⌠v 

du
dx dx  .

P: Then use it! In fact, when I was your age my calculus prof gave us the formula as:
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⌡⌠ f(x) g(x) dx = f(x) ⌡⌠g(x) dx - 
⌡
⌠f ' (x) ⌡⌠g(x) dx dx   which scared me, I admit, but now that I'm much older and a little

wiser I see what it's saying: if the original integral has a product, f(x) g(x), you use Integration by Parts and get another

integral where the first factor reappears differentiated, that's f ' (x), and the second reappears integrated, that's ⌡⌠g(x) dx.   If

you remember that, then you can determine "who's u and who's v" in your head. For example, suppose I wanted to integrate

⌡⌠x arcsin x dx . I could use integration by parts and get two possible "second integrals", either

⌡

⌠




x2

2  




1

1-x2
 dx   where the 2nd factor was differentiated, or 

⌡
⌠(1) 





⌡⌠arcsin x dx  dx  where the 1st factor was

differentiated. I'd choose the first type, letting u = the factor I want to reappear differentiated, namely u = arcsin x.

Similarly, for ⌡⌠x ex dx   I could use Integration by Parts and replace this integral with ⌡
⌠




x2

2  ( )ex  dx   ... the integrand is

(the integral of x) (the derivative of ex) ... OR with ⌡⌠(1)( )ex  dx  where the integrand is

(the derivative of x) (the integral of ex))). I'd choose the latter, letting u = the factor I want to reappear differentiated,
namely u = x.

Assorted Examples in Integration:

• For 
⌡
⌠ x-3

x2+2x+1
 dx  = 

⌡
⌠ x-3

(x+1)2
 dx , let u = x+1, du = 

du
dx  dx = dx and get  

⌡
⌠u-4

u2  du  = 
⌡
⌠




1

u - 
4
u2  du  

=ln|u| + 
4
u  + C =  ln|x+1| + 

4
x+1  + C

• For 
⌡
⌠ x1/3

1+x2/3 dx , let u = 1 + x2/3 so du = 
2
3  x-1/3 dx so dx = 

3
2  x1/3 du and get

⌡
⌠x1/3

u   
3
2 x1/3 du  = 

3
2 ⌡
⌠ 

x2/3

u  du  = 
3
2 ⌡
⌠u-1

u  du  = 
3
2 (u - ln |u|)  + C = 

3
2 ( )1 + x2/3 - ln (1 + x2/3)   + C

S: Wait! I thought we look for a function whose derivative is "next to dx" and let u = this function and so on. But I don't see
that that's what you're doing.

P: Okay, let me give you another technique: look for the hairiest function around and u = that. Then, by hook or crook, get rid
of every "x" and "dx" and hope the resultant integration in terms of "u" and "du" is easier. In the first example above, after

recognizing x2+2x+1 = (x+1)2, I didn't like (x+1)2 in the denominator ... it'd be much easier if it were simply x2 living there

... so I let u = x+1 and get a u2 in the denominator. And replacing the numerator and the "dx" by the appropriate expressions
in "u" didn't make things any worse ... and I got an easy integral in terms of "u". See? In the next example I didn't like the

x2/3 so I could have let u = x2/3 and du = (2/3)x-1/3dx and get ⌡
⌠x1/3

1+u  
3
2 x1/3du  but then I'd get 1+u in the denominator

which I'd like to replace by a single variable so I'd continue with a second substitution, letting v = 1+u and so on ... hence I

thought it'd be easier to simply let u = 1 + x2/3 right away and ..
S: That's confusing. How would I  know to do that?
P: Experience. Do dozens of integrals and you eventually get the hang of it. Remember, integration is an art. You have to have

a feel for it and you get this "feel" by doing lots of examples ... yourself ... not just watching me or reading the examples in
some book. Remember, too, that math is not a spectator sport. Get involved. Anyway, let me say something about the last
example above. I eventually eliminated all references to "x" and "dx" and got an easy integral in "u" and "du":

 
3
2 ⌡⌠

u-1
u  du  = 

3
2 (u - ln |u|)  + C = 

3
2 ( )1 + x2/3 - ln (1 + x2/3)   + C which I would most likely write

as  
3
2 ( )x2/3 - ln (1 + x2/3)   + C absorbing the constant 

3
2 (1)  into the arbitrary constant C.

S: And you forgot the absolute value signs in the ln !
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P: Well, actually, I didn't because | 1 + x2/3 | = 1 + x2/3 since this function is always positive.
S: How would I know that?

P: x2/3 is a square. It's the square of x1/3. That makes it positive, or at least non-negative. Everybody knows that ... even you.
S: Can you do an example which doesn't work out? I mean, sometimes you make a mistake, right? Sometimes, you let        u =

this and you should have let u = that.

Example: Evaluate  
⌡
⌠ ln x

ex + 1
 dx   ... if you can.

• Try u = ex + 1 so ex = u - 1 hence x = ln (u - 1)  (taking the ln of each side) and dx = 
dx
du  du = 

1
u-1  du  then we'd

get ⌡
⌠ln ln (u - 1)

u  
1

u - 1 du   which actually seems worse that the original integral.

• Now let's try u = ln x, then x = eu and dx = 
dx
du  du = eu du and we'd get  

⌡
⌠ u

eeu
+1

 eu du   which is awful!

• Let's try ... let's try ... uh ...

S: Give up?
P: Yeah, I can't do this one.
S: Welcome to the club.

P: That's not surprising, you know. If you just invent some function, f(x), chances are I couldn't evaluate ⌡⌠f(x) dx  in terms of

known functions. But I could always invent a brand new function. In fact, let me invent the following function:  P(x) =

⌡
⌠

1

x
ln t

et+1
 dt   then what do you think 

d
dx  P(x) is?

S: I haven't the foggiest.
P: Remember the Fundamental theorem, and how we managed to evaluate definite integrals without resorting to Riemann

SUMS? In trying to evaluate ⌡⌠
a

b

 f(x) dx  we invented the function A(t) = ⌡⌠
a

t

 f(x) dx  and discovered that 
d
dt  A(t) = f(t). We

should make a fuss about this so you'll remember it:

d
du ⌡⌠

a

u
 f(z) dz  = f(u)

In fact, I even changed the labels on the variables so you'd recognize it even if the variables aren't called "x" and "t". For
example:

• If H(w) = ⌡⌠
0

w

 esin t dt   then H'(w) = esin w.

• If G(k) = ⌡⌠
-1

k

 tan x2 dx   then 
d

dk  G(k) = tan k2.

•
d
dx ⌡⌠

π

x
 ln ln t dt  =ln ln x.

• If P(x) = 
⌡
⌠

1

x
ln t
et+1

 dt   then 
d
dx  P(x) = 

ln x
ex + 1

  . Hence, I now have a function whose derivative is  
ln x

ex + 1
   just as I
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promised. Hence,  
⌡
⌠ ln x

ex + 1
 dx  = P(x) + C.

S: You can't do that! Just because you gave it a name ... called it P(x) ... does that mean you've actually evaluated this integral?
Can I do that too? I mean, if you give me some integral I can't evaluate, can I just call it P(x) ... and will I get full marks on
an exam?

P: No. I'll only give you integrals which can be evaluated in terms of known functions, and that's how I want you to evaluate
them. I'm only telling you all this ... inventing new functions ... so you'll see that it can be done and you won't ever say "this
integral can't be evaluated" when you really mean "this integral can't be evaluated in terms of known functions". Let me see

you evaluate ⌡⌠
dx
x   .

S: Easy. It's ln | x | + C.
P: And before the natural log function was invented, what would you say about this integral?
S: Uh ... it can't be evaluated in terms of known functions, right?

P: Right. Now suppose I define P(x) = 
⌡
⌠

1

x
ln t

et+1
 dt   ... which is, after all, the area associated with the curve y = 

ln t

et+1
   from     t =

1 to t = x ... and if I determined this area very accurately for each x (using, for example, Riemann sums with plenty of
rectangles) and if I made a table of values of P(x) and gave this function a name, say the Ponzo function, and I found where
it was increasing and decreasing (because, you see, I know the derivative of P(x)), and I managed to get it into a bunch of
calculus books ... then, in future, when students ran across the above integral they'd just write the answer as P(x) + C

because P(x) would be a "known function". See? It's just like writing answers  ln | x | + C  or  sin x + C  or        ex + C. See?
You're happy only because somebody has already invented the ln and sine functions.

S: I guess so.

Examples:

(a)
d
dt 










⌡⌠
t

t2

 ln (1 + x2) dx   = ?

(b) ⌡⌠ln t dt  = ?

(c) ⌡
⌠

e

e2

 
ln(ln x)

x  dx  = ?

Solutions:

(a) ⌡⌠
t

t2

ln (1+x2)dx  =⌡⌠
0

t2

ln (1+x2)dx  - ⌡⌠
0

t

ln (1+x2)dx  (using a property of definite integrals)

= ⌡⌠
0

u

ln (1+x2)dx  - ⌡⌠
0

t

ln (1+x2)dx   where u = t2.   Then 
d
dt   gives

d
du




⌡⌠

0

u

ln (1+x2)dx
du
dt   - 

d
dt 




⌡⌠

0

t

ln (1+x2)dx    (where we've used the Chain Rule)

= ln(1+u2) (2t) - ln(1+t2) = 2t ln(1+t4) - ln(1+t2)

Note: In the above, we want to use  
d

du ⌡⌠
a

u
 f(z) dz  = f(u) but this requires:
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(i) the lower limit must be constant ... and that's the reason for writing ⌡⌠
t

t2
  = ⌡⌠

0

t2
  - ⌡⌠

0

t
  

(ii) the upper limit is a variable,
(iii) we're differentiating with respect to this variable upper limit (that's why we put u = t2)

(b) In  ⌡⌠ln t dt , we'll use ⌡⌠u dv  = uv - ⌡⌠v du  and we'll let u = ln t so dv = dt. Then du = 
du
dt   dt = 

1
t   dt and v =

⌡⌠dt  = t hence we get uv - ⌡⌠v du  = tln t - t + C (which we verify by differentiating).

(c) ⌡
⌠

e

e2

 
ln(ln x)

x  dx  = [ln x ln(ln x) - ln x ]e2

e
  (we've already evaluated the indefinite integral, earlier)

=(ln e2 ln(ln e2) - ln e2) - (ln e ln(ln e) - ln e) = (2 ln 2 - 2) - (0 - 1) = 2 ln 2 - 1

When we evaluate a definite integral (as opposed to an indefinite integral), we must first find an
antiderivative of the integrand (i.e. the indefinite integral), then evaluate at it the upper limit, then at the lower limit,
then subtract. If we make a substitution, u = g(x) say, then integrate, we get a function of u so we have to go back to
x again to evaluate at the upper and lower limits. This is sometimes inconvenient, especially if you make more than
one substitution to determine the antiderivative. It's nice to know, then, that you can carry your limits along with you.
Just ...

S: I haven't the faintest idea what you're talking about. Can't you give me an example?

Consider 
⌡
⌠

0

1
x

1+x2 dx  . We make the substitution u = 1+x2 so that du = 
du
dx  dx = 2x dx, hence x dx = 

1
2  du

and we get 
⌡
⌠ x

1+x2 dx  = 
1
2 ⌡
⌠du

u   = 
1
2  ln | u | (and we omit the constant of integration because we want to evaluate a

definite integral). Now we return to the original variable, x, and get:
⌡
⌠

0

1
x

1+x2 dx  = 
1
2  ln (1+x2)]

1
0  = 

1
2  ln 2 - 

1
2  ln 1.

HOWEVER (and here's the nice part) we could also have stuck with the "u" variable, changed the limits and written
1
2  ln |u | ]

2
1  = 

1
2  ln 2 - 

1
2  ln 1. See how it works? When x = 0, then u = 1+02 = 1 and when x = 1 then u = 1+12 = 2

so the u-limits are 1 and 2. In other words, when we changed variables (from x to u) we can also change limits,
writing:

 
⌡
⌠

0

1
x

1+x2 dx = 
1
2 ⌡
⌠

1

2
du
u      etc. etc.

Examples: Evaluate: (a)
⌡
⌠ dx

1-6x+9x2 (b)
⌡
⌠

1

2
dx

1-6x+9x2 

(c) ⌡⌠
-π

π

 sin t3 dt (d)  
⌡
⌠ x2

1+x2 dx  (e) ⌡⌠
0

π/4

sec2t 1-tan2t dt 
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(f) ⌡
⌠

1

e
ln2 t

t  dt (g)  
⌡
⌠

1/2

1
dx

2x-x2
  (h)   

⌡
⌠tan x

x
 dx 

(i) 
d
dz 




⌡⌠

0

arcsin z

 esin t dt  

Solutions:

(a)
⌡
⌠ dx

1-6x+9x2  = 
⌡
⌠ dx

(1-3x)2
  . Let u = 1-3x so du = -3 dx and get 

-1
3⌡
⌠du

u2  = 
-1
3  


-1

u   + C = 
1

3(1-3x)  + C

(b)
⌡
⌠

1

2
dx

1-6x+9x2  = 
⌡
⌠

1

2
dx

(1-3x)2
  . Let u = 1-3x so du = -3 dx. Also, when x goes from 1 to 2, u goes from -2 to -5 so we

get  
⌡
⌠

1

2
dx

(1-3x)2
   =  

-1
3⌡
⌠

-2

-5
du
u2  =  

-1
3  


-1

u
-5
-2  = 

-1
3  











1

5  - 


1

2   = 
1

10  .

(c) ⌡⌠
-π

π

 sin t3 dt  = 0  because sin t3 is an ODD function.

(d)  
⌡
⌠ x2

1+x2 dx  = 
⌡
⌠x2+1-1

1+x2  dx  = 
⌡
⌠




1 - 

1
1+x2  dx  = x - arctan x + C

S: You've already done that one.
P: I wanted you to see "add and subtract" again. Pay attention.

(e) ⌡⌠
0

π/4

sec2t 1-tan2t dt  . Let x = tan t so dx = 
dx
dt   dx = sec2t dt (we make this substitution because we see not only

tan t but also its derivative, sec2t). When t goes from 0 to π/4, x goes from tan 0 = 0 to tan π/4 = 1 so we get

⌡⌠
0

1

1-x2 dx  which we recognize as the area under a quarter-circle of radius 1 (since y = 1-x2  is the upper half

of the circle x2+y2=1, and for x between 0 and 1 we get the area of a 1/4-circle) namely 
π
4  π12 = 

π
4 .

(f) ⌡
⌠

1

e
ln2t

t  dt . Let u = ln t so du = 
dt
t   and when t goes from 1 to e, u goes from ln 1 = 0 to ln e = 1. We get

⌡
⌠

1

e
ln2t

t  dt  = ⌡⌠
0

1

u2 du  = 



u3

3
1
0  = 

1
3  .

(g)  
⌡
⌠

1/2

1
dx

2x-x2
   = 

⌡
⌠ dx

1-(x-1)2
  . Let u = x-1 and du = dx. For x =

1
2  , u = - 

1
2  and for x = 1, u = 0 so we get
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⌡
⌠

1/2

1
dx

2x-x2
   =

⌡
⌠

-1/2

0
du

1-u2
  = [ ]arcsin u

0
1/2  = ( )arcsin 0   - ( )arcsin (-1/2)   = 0 - (- 

π
6  ) = 

π
6  

S: That's pretty tricky. Should I know all this? I'll never remember it.
P: Completing the squares is useful. Remember it! See how many examples I'm doing? You'll get it by osmosis.

(h)   
⌡
⌠tan x

x
 dx . Let u = x   so du = 

du
dx  dx = 

dx
2 x

  and we get  2 ⌡⌠tan u du  = 2 ln | sec u | + C

(i)
d
dz 




⌡⌠

0

arcsin z

 esin t dt  . Let u = arcsin z so (using the Chain rule) we get  
d
dz 




⌡⌠

0

u

 esin t dt   = 
d
du 




⌡⌠

0

u

 esin t dt  
du
dz  =

esin u 
1

1-u2
  = eu 

1

1-arcsin2z
  .

LECTURE 18

APPLICATIONS OF THE DEFINITE INTEGRAL

VOLUMES:
Now that we're experts in integration, we should evaluate some integrals which represent something other

than areas.
Consider the problem of determining the volume of a solid. If it were a right-circular cylinder we'd have a

formula: πr2h (where r = the radius, h = the length). If it were a sphere we'd also have a formula: 4πr3/3. In fact,
there are many solids for which we have formulas ... BUT, we need a method in cases where the solid is irregular.
Just as we did when we considered the problem of the area enclosed by curves, we subdivide the volume into simpler
volumes for which we do have a formula. (Remember the rectangles, both vertical and horizontal ... and the circular
sectors for areas enclosed by polar curves?)

    

Before we go on, let's consider the volume generated by a plane area, A, which
moves a distance L in a direction perpendicular to the plane. The volume generated is
AL. If the plane area is a circle, then A = πr2 and the volume of the "right-circular
cylinder" is, as we've seen, πr2h. That's just a special case. For any plane area A, the
solid is still called a cylinder and the volume is AL.

Now consider a more general solid.
Perhaps the simplest method is to cut the solid

into many very thin slices. Each slice is very nearly
cylindrical with some cross-sectional area, say A, and a
thickness, say h. The volume of such a slice is (very
nearly) Ah. To make things more precise, we'll assume
that the volume is cut by a plane (or a knife) at a
distance x from some fixed plane. The cross-sectional
area will, of course, depend upon x. We'll call it A(x)
and the thickness of the slice, at the place x, we'll call dx
(which is a better name, for now, than "h"). Then A(x)
dx is a good approximation to the volume of the thin
slice. If we SUM the volumes  of all such slices

 we'll get the total volume of the solid, and the definite integral does the ⌡⌠umming  for us.
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We get   V = ⌡⌠
a

b
A(x) dx  . In other words, the volume of a solid is the integral of the cross-sectional area.

S: You're going too fast. I don't see how you'll get the exact volume of the solid. Maybe you'll get an approximation, but the
exact volume? Not likely!

P: Okay, we'll do this from scratch. (Aren't you tired of constantly going back to Riemann SUMs?) The volume lies between x
= a and x = b  (where "x" measures the distance of the slices from some fixed plane) so now we subdivide the interval [a,b]

into n subintervals of length  h = 
b-a
n    and in each subinterval we pick a convenient value of x, say x1 in the first

subinterval, x2 in the second and so on (does this sound familiar?) and now we consider the volume of the first slice of
width h and cross-sectional area A(x1), the second slice of width h and cross-sectional area A(x2) and so on and the SUM of

volumes of all such slices is A(x1) h + A(x2) h + ... A(xn) h = ∑
k=1

n
 A(xk) h  which we recognize as a Riemann SUM so now

we let n−>∞ so h−>0 (does this sound familiar?) and get, in the limit, ⌡⌠
a

b

 A(x) dx , the total volume of the solid. See?

S: Well ... not really.
P: Okay, we'll do it differently. Suppose we let A(x) be the

cross-sectional area at the place x and let V(x) be the
volume lying to the left of x. (i.e. from "a" to "x".) Now
we'll differentiate V(x) via
Error!. Note that V(x+h) - V(x) is just the volume from
x to x+h and we can write:

 Aminimum h < V(x+h) - V(x) < Amaximum h
where Aminimum is the minimum and Amaximum the
maximum cross-sectional area between x and x+h. What
we've done is found a cylindrical volume

       
 bigger and smaller than V(x+h) - V(x). Now ...
S: Hey ... let me do it! This does seem familiar! We SQUEEZE, right? Okay ... uh, let's see ... we write

 Aminimum h < V(x+h) - V(x) < Amaximum h

then  Aminimum  <  
V(x+h) - V(x)

h   < Amaximum

then  
 

lim
h−>0

 Aminimum  <  
 

lim
h−>0

V(x+h) - V(x)
h   < 

 
lim

h−>0
 Amaximum

then ... uh ...

P: Great! Keep going! The guy in the middle is just 
dV
dx  and now you've got to guarantee that the limits on each side are the

same. That's how we SQUEEZE.
S: Are they the same? I mean, what is the limit of Aminimum?
P: Remember when we did this before, for areas? Go back and look at your notes. The method is exactly the same. The limits

of Aminimum and Amaximum are just A(x) because they're the cross-sectional areas at some points between x and x+h and
h is going to zero so ...

S: Yeah, I got it, but we'd get A(x)< 
 

lim
h−>0

V(x+h) - V(x)
h   < A(x), or maybe A(x) < 

dV
dx  < A(x) and how does that give us 

dV
dx  ?

P: When taking limits we'd get A(x) ≤ 
dV
dx  ≤ A(x) and that makes 

dV
dx   = A(x).

S: How'd the < change all of a sudden to ≤ ?
P: Hmmm ... good question. Let's do this for something simpler. If x is a number less than 1, say 0 < x < 1, then it's greater

than 0 and smaller than x2. (If you don't believe me, try a few squares and convince yourself that x < x2.) Okay, we then
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have 0 < x < x2. Now let x−>0. Do you think that 0 < 
 

lim
x−>0

  x < 
 

lim
x−>0

  x2. No. In fact all three are precisely 0, so when

taking limits across inequalities we can't guarantee that < doesn't change to ≤, so we always write ≤ instead of <, just in case

... sort of insurance. In our case we'd get A(x) ≤ 
dV
dx  ≤ A(x) hence V(x) is an antiderivative of A(x). In fact, it's the special

antiderivative that has the value 0 when x = a ... and that makes  V(x) = ⌡⌠
a

x

 A(t) dt . See?

dV
dx  = 

d
dx  ⌡⌠

a

x

 A(t) dt  = A(x) (Remember? It's the integrand evaluated at the upper limit.) In particular, the total volume of

our solid is V(b) or ⌡⌠
a

b

 A(t) dt  which, of course, is the same as ⌡⌠
a

b

 A(x) dx .

S: I meant to ask you about that. You seem to rather cavalier with what you call the variable under the integral sign. You call it
"t", then you call it "x" and sometimes you even ...

P: ⌡⌠
a

b

f(x) dx  = [ ]F(x)
b
a  = F(b) - F(a). Remember? Now watch this: ⌡⌠

a

b

f(t) dt  = [ ]F(t)
b
a  = F(b) - F(a)  and  ⌡⌠

a

b

f(z) dz  = [ ]F(z)
b
a  

= F(b) - F(a). See? They're all the same number. It doesn't matter what you call the variable of integration. When the smoke
clears, it's gone anyway. The variable of integration is sometimes called a "dummy variable". See?

S: Then why don't you always use the same name, like x ... which I like best.

P: Well ... uh, that's a good question. You see, it's like this. Nobody likes to write ⌡⌠
a

x

f(x) dx  because the x in the upper limit

gets confused with the x under the integral. The upper limit is a particular value of the other x. You see ... uh, it's much

better to distinguish between them and write ⌡⌠
a

t

f(x) dx  so we're considering the area from x = a to x = t (and it'd be bad

manners to write "from x = a  to x = x").
S: I've heard lots of people say that: "from x = a to x = x".
P: Well, you won't hear me say it!
S: But didn't you say ... when we were slicing that solid ... that we measure distance and call it x and slice the solid at the place

x, and that'd mean at x = x, wouldn't it?
P: Uh ... I think we should go on. We've still got a ways to go before the end of this lecture. Pay attention.

Examples:

Volume of a cylinder: Assume the cylinder lies between x = 0
and x = L and we slice it by planes perpendicular to the axis of
the cylinder. The cross-sectional area is constant at some value

A. Then V = ⌡⌠
0

L
 A dx  = [ ]Ax

L
0  = AL, as expected. For a right

circular cylinder, A = πr2 and the volume is V = πr2L.                
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Volume of a cone:
The area A0 lies in a plane. A point P lies a distance h above the plane.
Every point on the perimeter of the area is joined to P, forming a cone.
We slice the cone by planes parallel to the plane of the area, a distance x
from the vertex of the cone. The cross-sectional area is a scaled-down

version of the base area and has the value A(x) = 


x

h  
2
A0. The volume is

V = ⌡⌠
0

h
 A(x) dx  = 

A0

h2  ⌡⌠
0

h

x2dx  = 
A0

h2  



x3

3
h
0  = 

1
3  A0 h. If it's a right circular

cone, A0 = πr2 and the volume is V = 
1
3  πr2h, as expected.

  

S: Wait. The cross-section has area A(x) = ( )
x
h   A0, not ( )

x
h  

2
A0. How do you get ...

P: Suppose the area is a circle, so A0 = πr2. If we slice half-way from vertex to base the cross-section is again a circle with
what radius?

S: I'd say  
1
2  r.

P: Right! And what's the area of a circle of radius 
1
2  r? It's π ( )

r
2  

2
 = 

1
4  πr2. See? It's 

1
4  of the base area, not 

1
2  . In fact, if we

scale every length by a factor 
1
3   then an area will be 

1
9   as large. If we scale down a solid so every length is reduced to 

1
3  

then the volume is reduced to ( )
1
3  

3
 = 

1
27  . See how it works? If every metre of length is reduced by a certain factor then

every quantity that's measured in metres2 (like SURFACE AREA or CROSS-SECTIONAL AREA) gets reduced by that

factor squared. Quantities measured in metres3 (like VOLUME) get reduced by that factor cubed. Anyway, we see that the

well-known formula for the volume of a cone, namely 
1
3 (base area) (height)  holds for any cone, not just right circular

cones. Nice, eh?
S: If you say so.

VOLUMES OF SOLIDS OF REVOLUTION:
The simplest solids to deal with are clearly

those which have particularly simple cross-sectional
areas (since we have to integrate this to get the volume).
One class of solids which has this nice feature is Solids
of Revolution. We begin with an area in the x-y plane,
enclosed by given curves ... for now we assume that the
area is bounded by y = f(x), x = a, x = b and the x-axis
(y = 0) as shown. Then we revolve this area about the x-
axis, sweeping out a solid of revolution. Now, when we
slice this volume by planes perpendicular to the x-axis
the cross-sections are just circles! Indeed, if we locate
the plane by its distance from the y-axis (x = 0), the
radius of the circular cross-section is just y = f(x)



39

so A(x) = πy2 and if the thickness of each slice is dx then volume of the slice at the place "x" is just

A(x) dx = π y2 dx. The total volume of the solid of revolution is then: V = ⌡⌠
a

b

 πy2 dx  = π ⌡⌠
a

b

 f2(x) dx 

A nicer way to think of this is to avoid
revolving the entire area at one time ... just subdivide
the area into vertical rectangles and revolve these one at
a time. Each such rectangle sweeps out a disc of radius
f(x) (since it's located at the place x and the y-coordinate
is the radius) and thickness dx. The volume is then   πy2

dx and ⌡⌠umming  all such disc-volumes (for every

elemental rectangle, from x = a to x = b) gives

V = π ⌡⌠
a

b

 f2(x) dx  as before. The advantage of this
             

interpretation of the formula π ⌡⌠
a

b

 f2(x) dx  is that we can also consider subdividing the area into other elemental

areas (such as horizontal rectangles!) and revolving each.

Example: Determine the volume of a cone of height H and base radius R.
Solution: We recognize the cone as a solid of revolution: the area

enclosed by y = 
R
H  x , x = 0, x = H, y = 0 is revolved about the x-axis. The

volume is then:

 V = π⌡⌠
0

H

y2dx  = π 


R

H  
2
 ⌡⌠
0

H

 x2dx  =  π 


R

H  
2
 



x3

3
H
0  = 

1
3  πR2H

    

S: You just did a cone. Do you like cones?
P: Yes ... now pay attention.

Example: Determine the volume of a sphere.

Solution: We first recognize that a sphere is a solid of revolution: just revolve the semi-circle y = a2-x2  

about the x-axis, from x = -a to x = a. The volume is V = π⌡⌠
-a

a

 y2dx  = π⌡⌠
-a

a

(a2-x2)dx  = π



a2x - 

x3

3
a
-a  = 

4
3  πa3

Example: Calculate the volume of a torus (or donut).
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Solution: To generate a torus we revolve the area within a circle,

x2+(y-b)2 = a2, about the x-axis. We can solve this for y = b ± a2-x2 , giving
an upper half-circle and a lower half-circle. Now we subdivide the area into
vertical rectangles (located at the place x, with thickness dx) and revolve each,
generating a disc-with-a-hole (or a "washer"). If the outer radius is R and the

inner radius r, the washer has volume ( )πR2-πr2   dx (since the cross-sectional
area is the area between two circles). But R is the y-value of the upper half-

circle: R = b + a2-x2  and r is the y-value of the lower half-circle:  r = b -

a2-x2  , hence the volume of the washer is:

π(R2 - r2) dx = π(R - r)(R + r)dx = 4πb a2-x2  dx and the total volume of the

torus is the ⌡⌠um  from x = -a to x = a, giving: V = 4πb⌡⌠
-a

a

a2-x2dx .

Although this integral seems difficult, we recognize it as the area

beneath a semi-circle of radius "a", namely  
1
2  π a2. Finally, then, V = 2π2ba2

which certainly has the dimensions of volume: if "a" and "b" are measured in
metres, then ba2 is in metres3 as it should be. Also, if a = 0 we get V = 0 as
expected (and that gives us more confidence in our answer). Finally (and this
is really interesting), we can write this volume as (πa2) (2πb) which is just the
area of the circle (πa2) multiplied by the distance moved by its centre (around
a circle of radius b, hence a distance 2πb) ... and that gives us even more
confidence in our answer.

S: Why do you need all this confidence? Don't you have any faith in your answer?

    

        

P: I have faith only if the answer seems reasonable ... and this answer does seem reasonable.
S: I like that last thing you said: the volume is just the area multiplied by the distance ... uh, how did it go?
P: Revolve an area about a line (like the circular area about the x-axis) and the volume of the solid of revolution is just

(area)(distance travelled by the centre of the area). In our case, area = πa2 and the distance travelled is 2πb. Nice, eh?
S: Hey, can I use that instead of all this integration? I'd never be able to do the donut your way.

P: Sure, do this one: find the volume when the area enclosed by y = x and y = x2 is revolved about the x-axis.

S: I  first draw a picture ... uh, y = x, I know that one, but y = x2 ... that one starts at (0,0) and gets bigger as x gets bigger so I'll

just sketch a curve which gets bigger. Then I find the points of intersection; I solve y = x2 and y = x  and I get  x2 = x so x =
1. I conclude that ...

P: What! x = 1? Is that all? What about the intersection at x = 0? You can't just go from x2 = x to x = 1.
S: Sure I can. I divided by x, don't you see? Pay attention. I get ...

P: You can divide by x only if x ≠ 0 and that means you've just thrown out a solution, namely x = 0. Look. Write x2 = x as x2 -
x = 0 so x (x - 1) = 0 so either x = 0 or x = 1. See? I get both solutions.

S: Do you want me to do this, or what? Okay, I get intersections at (0,0) and (1,1). Now I find the area between the curves by
using vertical rectangles ... the width is dx and the height ... uh, how do I know which curve is bigger? I mean, which is the

upper y-value? I won't worry about that now, I'll just assume y = x2 is bigger so that gives me rectangles with an area of (x2

- x) dx and I add them all up ... ⌡⌠um  them (as you're so fond of saying) ... and I get the area

⌡⌠
0

1

(x2 - x) dx  = 



x3

3  - 
x2

2
1
0  = 

1
3  - 

1
2  = 

2-3
(2)(3)   = 

-1
6   . I conclude that the area is 

1
6  , so now I  ...

P: What! You got a negative answer. So where did you go wrong? I'll tell you where you went wrong, you ...
S: I know, I know ... y = x is bigger, so who cares? I know the area is positive, so I just forget the (-) sign. Pay attention. Now

I'm going to find the volume when I revolve this area about the x-axis. I just use (area)(distance travelled by the centre of
the area) and the area = 1/6 and distance travelled is ... is ... how am I supposed to know where the centre of the area is? I
guess it's half-way ... uh, at (1/2,1/2) ... so that'd make a distance travelled of about 2π(1/2) or just π, so the volume is
(1/6)π. How's that?

P: Terrible! You don't even know if x2 is larger or smaller than x and you're just guessing the location of the centre of the area
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and ...
S: Okay, you do it.

P: First I make a reasonable diagram (and I know that x2 is
smaller than x when x lies in 0 < x < 1 since I just have

to try one value, say x=.5 then x2=.25 is smaller). Then I

subdivide into vertical rectangles of area (x - x2) dx and

⌡⌠um  from 0 to 1 and get 
1
6   as the area. Next I find the

volume by revolving each rectangle about the x-axis.

Each gives a "washer" of inner radius y = x2 and outer

radius y = x so the volume is π{ }(x)2 - (x2)2  dx and I

⌡⌠um  these from x = 0 to    x = 1 and get the total

volume

V = π⌡⌠
0

1

(x2 - x4)dx  = π



x3

3  - 
x5

5
1
0  =

Error!
S: I thought you were going to use (area)(distance travelled by the centre of the area) to find the volume. But I know why you

didn't use it ... you don't know where the centre of the area is, right?
P: Sure I do. It's located at ... uh, the y-coordinate of the centre of area is ... give me a second ... it's

2
5  (which, by the way, is smaller than your guess of 

1
2 ) .

S: How'd you get that? I mean, how do you know the centre of area is at y = 
2
5  ?

P: Pay attention: I use (area)(distance travelled by the centre of the area) and I 've computed the area as 
1
6   and the centre of

area I take to be at y = 
2
5  so it travels around a circle of radius 

2
5   so I get a volume of (area)(distance travelled ) which is

1
6 ( )2π 

2
5   = 

2π
15   and, as we've seen, it's the correct volume. See? y = 

2
5   works!

S: But that's cheating! I bet you just figured out where the centre of area had to be to give the right volume. Am I right?
P: Yes. And that's as good a way as any to define what we mean by the "centre of area". It's located at a point such that

(area)(distance travelled by the centre of the area) gives the volume. For example, the y-coordinate of the centre of area ...

let's call it y -  ... satisfies A 2π y - = V (where A = area and V = volume) so we have a formula for finding the centre of area:

y - = 
V

2πA  . Nice, eh? You see, it makes sense, this definition of "centre of area", and it works when the area is a circle so that

gives us some faith in using this definition and besides, if I define the centre of area in this manner who can argue with me?
It's a definition, after all, and we can't argue with a definition! It just has to be a reasonable definition which agrees with

what we'd expect the centre of area to be in simple cases. See? Just use  y - = 
V

2πA  .

S: Can we patent that formula ... or has somebody already discovered it?
P: It's called:
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THE THEOREM OF PAPPUS

      A planar region of area A is revolved
about a line

       (in the same plane as the region).

     The volume of the solid of revolution is
given by:

V = 2πy-  A  

Given any two of V,  y -  and A we can compute the third from A = 2π y -  A.

Examples:

 

Since the area of a semi-circle is A = 
1
2  πr2 and the volume (when revolved

about the diameter) is V = 
4
3  πr3 , then the centre of area (or CENTROID) is

located at  y -  = 
V

2πA  = 
4

3π  r  (the distance from the diameter).

We revolve a right-triangle about a side, generating a right-circular cone. The

area of the triangle is A = 
1
2 (base) (height)  = 

1
2  a b  and the volume of the

cone is V = 
1
3 (area of base) (height)  = 

1
3  πa2 b, so the CENTROID of the

triangle is located a distance  
V

2πA  = 
1
3  a  from the line about which we

revolved.

S: Hey! I knew that! The centroid of a triangle is 1/3 of ... of something. Say, can I use this theorem is you ask me to compute a
volume?

P: Only if I say "Use the Theorem of Pappus to compute ..."
S: But why? If it's easier, then I should be allowed to use it!
P: If I want to test you on your ability to set up a definite integral and evaluate it, then I won't allow you to use Pappus.

However, by all means use Pappus to test for "reasonableness".
S: But if I get the right answer, surely ...
P: No! Getting the right answer isn't as important as knowing a method of solution. You can write

 
lim

x−>∞
 ( )1+x - x   = ∞ - ∞ = 0 and get the right answer, but it's not worth any marks because the method is all wrong. On

the other hand, even if you get the wrong answer you may still get full marks. For example, you solve a complicated
problem ... demonstrating your ability to solve this type of problem ... then you end up with (2)(3) which you inadvertently
write as "5". I'd give you full marks because I know you can multiply "2" times "3" correctly ... I think.

S: Thanks.

Example:

Compute the volume generated when the region enclosed by y = x, y = x2 and y = 
1
2   is revolved about the x-axis.
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Solution: The points of intersection are (0,0), (.5,.5) and ( .5  ,.5) as
shown in the diagram. For 0 ≤ x ≤ .5, the vertical rectangles rise from y = x2 to
y = x, and in .5 ≤ x ≤ .5  they rise from y = x2 to y = .5 so we'll need two
definite integrals. When we revolve the rectangles in [0,.5] we get "washers"
with volume π((x)2 - (x2)2) dx and when we revolve the rectangles in [.5, .5 ]
the volumes are π((1)2-(x2)2) dx.

The total volume is then:

    V = π⌡⌠
0

.5

(x2-x4) dx  + π ⌡⌠
.5

.5

(1-x4) dx  = π



x3

3  - 
x5

5
.5
0  + π



x - 

x5

5
.5

.5
  

     = 
19π

20 2
  - 

11π
24    which is roughly π





1

2
 - 

1
2   which is roughly 3(.7 - .5) ≈ .6,

and we should check this for reasonableness. However, since we'll be doing
this problem again, differently, we'll wait.

LECTURE 19

MORE APPLICATIONS OF THE DEFINITE INTEGRAL

Volumes of solids of revolution using horizontal rectangles
In the previous problem we were faced with a region which had to be

subdivided into two parts: 0 ≤ x ≤ 
1
2   and  

1
2  ≤ x ≤ 

1
2

  . There were different

expression for the height of the vertical rectangles depending upon where the
rectangle was located. Had we taken horizontal rectangles (as we often do
when computing AREA rather than VOLUME) and revolved each about the x-
axis, then we'd get a single definite integral for the volume. That's because a
horizontal rectangle, located at the place "y" (between y = 0 and y = .5),
always runs from y = x (on the left) to y = x2 (on the right).

Okay, at the place y the right-most x-value is  x
= y   and the left-most is x = y so the width of the
rectangle is xright - xleft = y  - y (compare this to
yupper - ylower when we took vertical rectangles!). The
height of the horizontal rectangle is dy (it's an increment
in "y" rather than an increment in "x", so we call it dy).

If we wanted the AREA of the region we'd just ⌡⌠um  

via ⌡⌠
0

1/2

( y - y) dy . However, we want to revolve each horizontal rectangle about the x-axis, giving a VOLUME. The

solid generated is a cylindrical shell. (A very thin cylindrical shell). We need to know the volume of such a shell (as
we needed to know the volume of a "disc" or a "washer" when we took vertical rectangles).
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Imagine such a shell as a rectangular piece of paper
rolled into a cylinder. To find its volume we cut it,
unroll it, and recognize that its volume is just
(width)(length)(thickness) = (W)(2πR)(t)  where "t" is
the thickness and the length is just the circumference of
a circle of radius R. It's much like painting the sides of a
cylindrical soup can, then asking for the volume of
paint: the thickness is very small.

   

For our horizontal rectangle we need only identify the
width, height and thickness. They're y  - y , 2πy and dy
respectively. Then the volume of each cylindrical shell
is just 2πy ( y  - y) dy and the total volume of all such
shells, obtained by revolving all horizontal rectangles

from y = 0 to y = 1, is the ⌡⌠um , namely:

V = 2π ⌡⌠
0

1/2

y ( y - y) dy  = 2π ⌡⌠
0

1/2

(y3/2 - y2) dy 

  = 2π 



2

5 y5/2 - 
y3

3
1/2
0   = 

π
5 2

  - 
π

12  .

S: Hold on! Last time you got  
19π

20 2
   -  

11π
24   !

P: Well, I guess they're the same number ... wouldn't you think?
S: But they're not the same! I mean, they sure don't look the same. I mean ...
P: Well look carefully through both solutions and see if you can find any error. That's left as an exercise for the student ... and

guess who's the student?

When we use horizontal rectangles we need to solve for x, from the equations for the curves which enclose
the region. That's because we need the width of the rectangle located at some y-value and that's xright - xleft. In
general, if the region we're revolving is bounded by, say y = f(x) and y = g(x) as shown below, then, for vertical
rectangles we'd get a thin washer with volume π(g2(x) - f2(x)) dx  (assuming that y = g(x) is the upper curve) and for
horizontal rectangles we'd get a thin cylindrical shell with volume  2πy (F(y) - G(y)) dy  where y = f(x), when solved
for x gives x = F(y) and y = g(x) gives x = G(y).

NOTE: F and f are inverse functions ... and  g and G are also inverse functions ... and it's not always clear
which will give the simpler integrals to evaluate: horizontal or vertical rectangles.

Example:
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Compute the volume when the region enclosed by y = sin x, y = x and y = 1 is revolved about the x-axis.
Solution: If we take vertical rectangles we'd get the volume expressed as

V = π⌡⌠
0

1

(x2 - sin2x) dx  + π ⌡⌠
1

π/2

(1 - sin2x) dx   both of which are pretty easy (the only tough integral is ⌡⌠sin2x dx  but

if we write sin2x =  
1 - cos 2x

2    it's easy) ... BUT there are two integrals. If we try horizontal rectangles we solve y =

x  for x = y (pretty easy) and y = sin x for x = arcsin y (and right away we expect a problem!). The volume

(expressed in terms of horizontal rectangles, revolved) is  V = 2π⌡⌠
0

1
y (arcsin y - y) dy   which, although it's only a

single integral, is more difficult (because of the arcsine function).

S: Aren't there any real problems we can ... uh, you can solve? I mean, problems which aren't just math problems?
P: Using definite integrals? Sure. Lots of them. Remember, the definite integral can represent things other than AREA or

VOLUME. This area/volume stuff is just so we can picture what's happening.

Example: The speed of an object depends upon the time according to v(t) = t2 + t metres/second, where t is
measured in seconds. Determine the distance travelled during the time interval from t = 1 to t = 3.

Solution: If x(t) is the distance travelled in a time t, then 
dx
dt   = v = t2 + t so x(t) = ⌡⌠(t2+t)dt  = 

t3

3   + 
t2

2   + C.

Further, x = 0 when t = 0 so (substituting) we find 0 = 0 + C so C = 0 and x(t) = 
t3

3   + 
t2

2   . When t = 1,

x(1) = 
13

3   + 
12

2    and  when t = 3, x(3) = 
33

3   + 
32

2   . The distance travelled during the time from t = 1 to t = 3 is

x(3) - x(1) = 



33

3  + 
32

2   - 



13

3  + 
12

2   = 



 

t3

3  + 
t2

2
3
1  and this is just ⌡⌠

1

3

(t2 + t) dt . We conclude that the distance can be

found directly by integrating the speed from t = 1 to t = 3 ... a definite integral: ⌡⌠
1

3
 v(t) dt  .

Note that v(t) is the rate of change of distance measured in, say, km/hour, and x(t) is the distance travelled

(in km) after a time t. Hence v(t) dt is the number of kilometres during dt hours and ⌡⌠umming  gives the total

number of kilometres. This understanding goes with a number of similar problems.
• If A(z) is the change in the number of acres per foot, at z feet, then A(z) dz is the number of acres for a change

of dz feet and ⌡⌠
a

b
 A(z) dz  is the total change in the number of acres from z = a to z = b feet.

• If U(T) is the change in pressure per degree Celsius, when the temperature is T˚, then U(T) dT is the pressure

change when the temperature changes from T to T+dT and ⌡⌠umming  gives ⌡⌠
a

b
 U(T) dT  as the total change in

pressure when the temperature changes from T = a to T = b.
• If the growth is M(t) cm per month, after t months, then M(t) dt is the number of centimetres of growth during

the time from t to t+dt and ⌡⌠
a

b
 M(t) dt  is the total growth from t = a to t = b months.

In general, if W is a rate of change, measured in whatzits per doodle, and if D, the amount of doodles

changes from D = a to D = b, then the total change is W 
whatzits

doodle
   x (b - a) doodles = W (b - a) whatzits.

Unfortunately, if the rate of change, W, depends upon the number of doodles, say W = f(D), then we assume that D
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changes in microscopic steps during which W = f(D) is essentially constant ... during each microscopic step. When
the amount of doodles changes from D to D+dD, the change in whatzits is f(D) dD. The total change is then obtained

by ⌡⌠umming  all these microscopic changes:  ⌡⌠
a

b
 f(D) dD . Note that if f(D) is constant at the value W, the integration

yields W (b - a) as expected.

Example: In drilling a well, the cost per metre depends upon the type of sand, gravel or rock which must be
excavated. Suppose the cost is C(x) dollars/metre at a depth x metres. (As x changes, the type of material changes,
hence the cost changes.) Express, as a definite integral, the cost in digging a well of H metres.
Solution: In digging from x to x+dx, the cost per metre is C(x) so the cost for just this short piece is

C(x) dx dollars. The total cost, for H metres, is ⌡⌠
0

H
C(x) dx   dollars.

S: I don't understand this at all.
P: Patience.

Example: The force required to extend a spring a distance of x cm is F(x) Newtons. (The more the extension,
the greater the force required ... and we'll measure the force in "Newtons".) If WORK is measured as
(force)(distance), how much work is done in extending the spring a distance h metres.
Solution: In extending from x to x+dx, the force is F(x) and the work is F(x) dx. The total work in extending

from x = 0 to x = h is  ⌡⌠
0

h
F(x) dx  (measured in a strange unit: Newton-centimetres!) 

S: I still don't ...
P: Okay, here's how it goes. We're digging a well and we're at a depth of x metres. At this depth the cost is $C for every metre,

so digging a small, incremental distance dx will cost $C dx. The next small step of length dx will also cost $C dx , but C

changes, so we just ⌡⌠um  the costs via ⌡⌠
0

H

C(x) dx . See? The definite integral does it all for us. It's like finding the area

under a curve y = f(x). We consider only the part from x to x+dx and assume that f(x) is constant there, at the value f(x). The

area under the curve is then approximated by f(x) dx (i.e. the area of a vertical rectangle). When we ⌡⌠um  from x = a to x =

b we get the exact area, namely  ⌡⌠
a

b

f(x) dx  . See how it works? Consider extending the spring. We do it in small steps of

length dx (like digging the well in small steps of length dx). When we're at a length x the force is F(x) and even though it
changes with x we assume it's constant over the small interval dx and approximate the work by (force)(distance) = f(x) dx.

Now ⌡⌠um  all such incremental work, from x = 0 to h and get WORK =⌡⌠
0

h

f(x) dx  and it's exact.

S: Seems fishy that you can write down an approximation then, poof, you get the exact answer.
P: Go back and review Riemann SUMS and taking the limit as h−>0 and n−>∞ and all that good stuff. It's this limiting

procedure which gives us the exact answer. Remember? The errors actually go to zero. That's why I never say "we sum this

or that" I always say "we ⌡⌠um  this or that".  Buried in that expression is a world of ingenuity. Let's do the well-digging or

the work problem by constructing a Riemann SUM then taking the limit. Are you interested?
S: Will it be on the final exam?
P: Forget it. We'll go on with another application.

Example: The cost of manufacturing an item depends upon the number of items manufactured. For the first
few items the cost is high and the profit low, but as we produce more items the cost decreases hence the profits
(when we sell the items) increase. Suppose the profit for the nth item is p(n) dollars per item. Express, as a definite
integral, the profit in producing (and selling) K items.
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Solution: If we've produced n items and produce just a few more items, say dn items, then the profit is

approximately p(n) dn. Now we ⌡⌠um  the profits for all K items and get the total profit as  ⌡⌠
1

K
p(n) dn  .

S: Come on! "We produce just a few more items, like maybe dn more"? I thought dx and dy and dn were supposed to be really
small. Are you talking about 1/1000 or an item or what?

P: That's a good question. In fact, a very good question. How come you never asked when we maximized the yield of apples
from our orchard? Remember? We asked "How many more trees should be added to maximize the yield". I invented the
problem so there would be an integer number of trees to add. You should have asked "What if we had to add 1/1000 of a
tree, what then?" You see, if we are to apply the methods of calculus we have to assume that the independent variable can
take on any value (in some domain). Then we can talk about "dx" and so on. If the independent variable is the number of
trees or the number of items then it's clearly an integer so we fudge things a bit and consider it a "continuous variable".
When we get an answer like "add 57.8 trees" we just add 58 more trees. See? Actually, if our manufacturing plant produced
tens of thousands of items the graph of p(n) versus n might look like the the diagram below ... and if we expand a piece we'd
see that p(n) is a bunch of points, one point for each integer "n".

In fact, the actual total profit is really "the profit for the first item" + "the profit for the second" and so on. In other words,

it's p(1) + p(2) + ... + p(K). However, it's often easier to use ⌡⌠
1

K

p(n) dn  and recognize that it's a reasonable approximation if

n is large.

S: Aha! Approximation! I said your ⌡⌠ummimg  just gave approximations, didn't I?

P: Okay, in this case we do get an approximation, but not because of the definite integral. If we have an equation for p(n), such

as p(n) = 5 + 
1
n  , then ⌡⌠

0

K

p(n) dn  = [ ]5n + ln n
K
0  = 5K +ln  K and this would be exactly the area under the curve and exactly

the total profit if n were a continuous variable. The mathematics can't tell that "n" is an integer; it thinks it's any real number.
It's we who have introduced the error (fortunately, a small error in many cases of interest) by resorting to the methods of
calculus.

S: No, it's not we. I didn't introduce anything. It's you who introduced the error ... and here's another one for you. Your graph
of p(n) is decreasing and you said the profit would increase. Ha!

P: Pay attention. Here's another application.

S: Wait. You said it's easier to use ⌡⌠
1

K

p(n) dn  than to use p(1) + p(2) + ... + p(K). You're kidding, right? I mean, integrating is

easier than adding?

P: Okay, let's see you add p(1) + p(2) + ... when p(n) = 5 + 
1
n  . You'd get (5+

1
1  ) + (5+

1
2 ) + (5+

1
3 ) + ... + (5+

1
K  ) and what's

that add up to? There are 5's which add up to 5K, by what about 
1
1  + 

1
2  + 

1
3  + ... + 

1
K  ? That's not easy. In fact (and this may

surprise you), if K is large, it adds up to ln K very nearly.
S: Nothing surprises me ... and what's "very nearly".
P: Remember when we talked about one thing being "close to" another? We agreed that the way to compare them is to take

their ratio and see if it's very close to 1. In this case, the ratio   
1/1 + 1/2 +1/3 + ... +1/K

ln K     is very close to 1, when K is large.

In fact, you may be interested to know that 
 

lim
K−>∞

1/1 + 1/2 +1/3 + ... +1/K
ln K    = 1.

S: I'm not.
P: Pay attention.
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Consider the graph of y = 
1
x   from x = 1 to x = n. We divide it up into rectangles as shown.

First we consider n rectangles whose total area is larger than the area under the curve, then rectangles whose
total area is smaller than the area under the curve. In each case the width of each rectangle is "1", but the heights

differ. In the first case, the heights (given by y = 
1
x  ) are  

1
1   and 

1
2   and  

1
3   etc. so the total area of these rectangles is

just: 1 + 
1
2  + 

1
3  + ... + 

1
n-1  (and this is larger than the area under the curve y = 

1
x ) . The second set of rectangles have

heights 
1
2  and 

1
3   and  

1
4   etc. so the total area of rectangles is  

1
2  + 

1
3  + 

1
4  + ... + 

1
n   and this is smaller than the area

under the curve. But we know exactly the area under the curve; it's ⌡
⌠

1

n

 
dx
x   = ln n  so (using the smaller rectangles):

1
2  + 

1
3  + 

1
4  + ... + 

1
n   < ln n hence 1 + 

1
2  + 

1
3  + ... + 

1
n  < 1 + ln n  hence

1 + 
1
2 + 

1
3 + ... + 

1
n

ln n   < 
1

ln n  + 1 hence
 

lim
n−>∞

 
1 + 

1
2 + 

1
3 + ... + 

1
n

ln n    ≤ 1.

Now use the larger rectangles and get:

ln n < 1 + 
1
2  + 

1
3  + ... + 

1
n-1  hence

1
n  + ln n < 1 + 

1
2  + 

1
3  + ... + 

1
n  hence

 
1

n ln n  + 1 < 
1 + 

1
2 + 

1
3 + ... + 

1
n

ln n    hence 1 ≤ 
 

lim
n−>∞

 
1 + 

1
2 + 

1
3 + ... + 

1
n

ln n   .

P: Well? What's our conclusion?  Did you notice that we used the ol' SQUEEZE again?
S: zzzzzz
P: Well, at least you see that the definite integral can be used for lots of things, not just AREAs. We'll do some more:

AVERAGE VALUE OF A FUNCTION:
Suppose we wish to determine the average value of a function. To be specific, suppose the temperature

during a 24 hour period varies according to T = 20 + 10 sin 
πt
12   so it starts out (at t = 0) at 20˚C and varies from a

minimum of 10˚C to a maximum of 30˚C, then starts all over again, 24 hours later. What's the average temperature?
Clearly we'd want to measure the temperature many times throughout the day and average them. Suppose we

measure the temperature n times and get T1, T2, ....,Tn. Then the average would be   
T1 + T2 + T3 + ... + Tn

n   . To be

more accurate we should measure T every second or perhaps every 1/10 second, etc. What would we get if we
measured T an infinite number of times? If we could do that, we'd have the average temperature exactly.

We subdivide the 24 hour time interval into n subintervals of length h = 
24
n   (does that sound familiar?)  and

measure the temperature at times t = h, 2h, 3h, .... , nh (which, of course, is the same as t = 24). The average is then
T(h)+T(2h)+T(3h)+...+T(nh)

n    and we'd like to compute the limit of this as n−>∞. To this end we rewrite it as:
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T(h)h+T(2h)h+T(3h)h+...+T(nh)h
nh   = 

1
24 ∑

k=1

24
 T(kh) h   where we've multiplied numerator and denominator by h and

put nh = 24. Now we let n−>∞ and recognize the limit of a Riemann SUM which yields:  
1

24 ⌡⌠
0

24
 T(t) dt . For our

particular T = 20 + 10 sin 
πt
12   we'd get an average temperature of 

1
24 



20t - 

120
π  cos 

πt
12

24
0   = 20˚C which is not too

surprising, I guess.
We generalize this:

The average value of f(x) over the interval x = a to x = b is   
1

b - a ⌡⌠
a

b
 f(x) dx 

One interesting thing about this "average" value is the following:
Suppose y = f(x) is positive on [a,b] and we graph it. The "area under

f(x)" would be (width)(height) provided f(x) were a constant (i.e. the graph
was a horizontal line, so f(x) = constant). If f(x) weren't a constant, what height
should we use in order to get the correct value for the area? In other words,
using width = b - a, what height would make the area under the curve equal to
the rectangular area: (width)(height) = (b - a) (height). Well, since the area is

 

⌡⌠
a

b
 f(x) dx , we'd want (b - a) (height) = ⌡⌠

a

b
 f(x) dx   so that the correct height  is 

1
b - a ⌡⌠

a

b
 f(x) dx  .

It's just the "average height" as given by our formula for "average"... so we think it's a good definition of
"average".

Example: The velocity of a vehicle is given by v(t) = 50 + 20e-t km/hour. Calculate its average velocity 
over the time interval from t = 0 to t = 3 hours.

Solution:

vaverage = 
1

3-0 ⌡⌠
0

3

(50+20e-t) dt  = 
1
3  [50t - 20e-t]

3
0  = 

1
3 { }( )50(3) - 20e-3  - ( )59(0) - 20e-0   = 

170 - 20e-3

3   km/hour.

Note that ⌡⌠
t1

t2
v(t) dt  is the total distance travelled by the vehicle during the time interval from t = t1 to t = t2, so

1
t2 - t1

 ⌡⌠
t1

t2
v(t) dt  = 

total distance
total time    is just what we'd expect the average velocity to be!
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A PARADOX:

Consider the volume when the area under y = 
1
x   is revolved

about the x-axis, from x = 1 to x = L. We have (using vertical

rectangles) V = π
⌡
⌠

1

L

 
1
x2 dx  = π



- 

1
x

L
1  = π 



1 - 

1
L  . Now consider the

area under the curve, namely A = ⌡
⌠

1

L

 
1
x dx  = [ ]ln x

L
1  = ln L.         

Notice that revolving the curve y = 
1
x   about the x-axis generates a kind of container which, when filled with

paint, would require  π 



1 - 

1
L   metres3 of paint (assuming both x and y are measured in metres). As L−>∞ we'd

never need more than π m3 of paint ... even though the container becomes infinite in length. Now look at the area:
 ln L−>∞ as L−>∞. That means that even though the infinite container is filled with paint (π m3 worth of paint), it's
not enough paint to cover this infinite area (which, after all, lies entirely within the container!).

S: Do you expect me to believe that?
P: Do you see anything wrong with my reasoning?
S: I guess not ... but I still don't believe it. I mean, is the math is so stupid that ...
P: It's never the math that's stupid, it's us.
S: Speak for yourself.
P: I bet you think it always takes more and more paint to cover bigger and bigger areas. Pick a big area.

S: I pick 1010 metres2.

P: Okay, I cover it with paint 10-30 metres thick and that'll take (area)(thickness) = 1010 10-30 = 10-20 metres3 of paint. Not
much, eh? And if you picked a larger area I'd just use a much thinner coat of paint and could paint your larger area with
even less  paint!

S: So?
P: So let's talk about real paint with molecules having a radius of ... what's a good symbol for a small radius?
S: How about ε? I always liked ε. He's small but he gets around and ...
P: Pay attention. We'll fill our "infinite" container with paint having molecules which are ε

metres in radius. That means the paint will only fill the container until the radius of the neck

of the container is y = 
1
L   = ε. That means L = 

1
ε   in our formula for volume, so the volume

is V = π (1 - ε) metres3. Now our area is ln L = ln 
1
ε   and covered with paint of molecular

radius ε will give a thickness 2ε and hence a volume of: (area)(thickness) =   2ε ln 
1
ε   

metres3. Did you know that 2ε ln 
1
ε   is always less than π (1 - ε)? That means there is

always enough paint in the container to cover the area. What do you think of that? You see,
comparing an area with a volume is wrong, wrong wrong! They're don't even have the same
dimensions. It's like comparing apples to oranges. There really  is no paradox.

S: Do I have to know this for the final ...
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LECTURE 20

IMPROPER INTEGRALS

At the end of the last lecture we considered ⌡
⌠

1

L

 
dx
x   , the area under y = 

1
x   from x = 1 to x = L ... then we let

L−>∞. It would be tempting to write the infinite area as ⌡
⌠

1

∞

 
dx
x   , but then we'd recall the definition of the "definite

integral"⌡⌠
a

b
f(x)dx  and realize that this collection of symbols means the limit, as n−>∞, of a Riemann SUM of n

rectangular areas each of the form f(xi) h, where xi is some point in the ith subinterval (so f(xi) gives the height of the

rectangle) and h is the width of each subinterval (hence the width of each rectangular area), and, for ⌡⌠
a

b
f(x)dx  , we

have h = 
b - a

n   . Now what happens if b = ∞, as in ⌡
⌠

1

∞

 
1
x dx  ? Is h = 

∞ - 1
n   ? Certainly not. How then do we subdivide

the infinite interval 1 ≤ x < ∞ so that  we have n rectangles each with a finite (not infinite!) area??!%$#*

S: What's wrong with an infinite area? That's what it is, right? I mean, when you did this problem you said the area is infinite,
so what's wrong with ...

P: Okay, you have a point there. So let me consider the volume of revolution when the above area is revolved about the x-axis,

namely  π
⌡
⌠

1

L
dx

x2  . Now, as L−>∞, we actually get a finite volume, yet if we look back at the definition of the definite integral

... as a limit of a Riemann SUM ... we'd run into the same problem if we let L−>∞ and wrote the volume as π
⌡
⌠

1

∞
dx

x2  . The

interval is infinite in extent hence if we subdivide into n subintervals (say 100 or 1000 subintervals), we'd have rectangles of
infinite width.

S: But you already got an answer for that problem. You said ... if I remember correctly ...

V = π
⌡
⌠

1

L
1

x2 dx  = π[ ]- 
1
x

L
1  = π ( )1 - 

1
L   then you let L−>∞ and got the answer V = π. What's wrong with that? No

Riemann SUM, no subintervals, no infinite widths, no infinite anything!
P: You know, you're becoming very clever. That's exactly what we'll do with an integral where the upper limit is ∞.

The collection of symbols ⌡⌠
1

∞
 f(x) dx  means the limit of a Riemann SUM ... that's the definition ... we have

no choice ... and that's where we have a problem because each term in the Riemann SUM is infinite! However, if we
do as suggested, we avoid this problem. Hence, we will DEFINE (and this is important!) this type of so-called
IMPROPER INTEGRAL as follows:
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DEFINITION of an IMPROPER INTEGRAL

⌡⌠
a

∞
 f(x) dx   = 

 
lim

L−>∞
 ⌡⌠
a

L
 f(x) dx 

provided the limit exists

In other words, if somebody gives you an integral such as  π
⌡
⌠

1

∞
1

x2 dx  , you just evaluate π
⌡
⌠

1

L
1

x2 dx  which is a

perfectly proper integral (nothing infinite anywhere) ... and you have a warm feeling all over because π
⌡
⌠

1

L
1

x2 dx   has

a perfectly acceptable definition in terms the limit of a Riemann SUM, with subintervals of perfectly acceptable

width h = 
L-1
n    ... then, having evaluated  π

⌡
⌠

1

L
1

x2 dx  , you let L−>∞! If you get a limit (as is the case here), you can

say  " π
⌡
⌠

1

∞
1

x2 dx   converges to π ", or simply π
⌡
⌠

1

∞
1

x2 dx  = π.

S: What's all this "converges to π" stuff? I mean, ...
P: I admit it seems a little unusual to introduce this phrase, but it'll become clearer in the next calculus course. In the meantime,

to impress your friends, you can say ⌡⌠
1

∞

 
dx
x     diverges  but  

⌡
⌠

1

∞

 
dx

x2    converges, and I might ask you to see if a certain

"improper integral" converges or diverges.

Example: Which of the following improper integrals converge?

(a) ⌡
⌠

0

∞
dx

1+x (b) ⌡⌠
0

∞

 e-x dx (c) ⌡⌠
-1

∞
 sin x dx (d) ⌡⌠

-∞

∞

 e-x dx 

Solutions:

(a) By definition, ⌡
⌠

0

∞
dx

1+x  = 
 

lim
L−>∞

 ⌡
⌠

0

L
dx

1+x  = 
 

lim
L−>∞

[ ]ln (1+x)
L
1  =

 
lim

L−>∞
( )ln(1+L) - ln 1   =

 
lim

L−>∞
(ln  (1+L) )  = ∞, hence

⌡
⌠

0

∞
dx

1+x   diverges.
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(b) ⌡⌠
0

∞

 e-x dx   =  
 

lim
L−>∞

 ⌡⌠
0

∞

e-xdx  =  
 

lim
L−>∞

 [ ]- e-x L
0  =  

 
lim

L−>∞
 ( )1 - e-L   = 1, so ⌡⌠

0

∞

 e-x dx  converges to 1.

(c) ⌡⌠
-1

∞
 sin x dx  =  

 
lim

L−>∞
 [ ]- cos x

L
-1  =  

 
lim

L−>∞
 (cos (-1) - cos L)  but  cos L  has no limit, so ⌡⌠

-1

∞
 sin x dx  doesn't

converge (hence, it diverges).

(d) Here we write ⌡⌠
-∞

∞

 e-x dx  = ⌡⌠
-∞

0

e-x dx  + ⌡⌠
0

∞

e-x dx  and consider each integral separately. We know that  ⌡⌠
0

∞

e-x dx  

converges to 1 (as seen above, in part (b)), so we investigate  ⌡⌠
-∞

0

e-x dx  =  
 

lim
L−>-∞

 ⌡⌠
L

0

e-x dx  =

 
lim

L−>-∞
 [ ]- e-x 0

L  =  
 

lim
L−>-∞

 (-1 + e-L)  = ∞ , so  ⌡⌠
-∞

0

e-x dx  , and consequently  ⌡⌠
-∞

∞

 e-x dx  , diverges.

S: Hold on! First, why do you split ⌡⌠
-∞

∞
  as ⌡⌠

-∞

0
  + ⌡⌠

0

∞
  ? Why not ⌡⌠

-∞

∞
  = ⌡⌠

-∞

1
  + ⌡⌠

1

∞
  ? Second, ...

P: First things first. I could certainly have split the infinite interval, -∞ < x < ∞, at x = 1 rather than at x = 0. I'd still find that

⌡⌠
-∞

∞

 e-x dx   diverges. It really doesn't matter where I split it. Not only that, I could have left the integral in one piece and

considered  ⌡⌠
A

B

 f(x) dx  then let A −> -∞ (that'd give me ⌡⌠
-∞

B

 f(x) dx  ) then let B−>∞ (to get ⌡⌠
-∞

∞

 e-x dx  ). See?

S: No.
P: Okay, since we already have a definition for an integral where one limit is infinite, let's agree to always split at zero when we

have an integral from -∞ to ∞, then use the previous definition on each improper integral:

 ⌡⌠
-∞

∞
 f(x) dx  = 

 
lim

A−>-∞
 ⌡⌠
A

0
 f(x) dx  + 

 
lim

B−>∞
 ⌡⌠
0

B
 f(x) dx 

S: I can't really believe that such animals ever, ever show up in a real problem. I mean, integrals which go from -∞ to ∞. I
mean ...

P: Oh, they do. If f(x) is a probability density, meaning that f(x) dx is the probability that a certain random variable lies

between x and x + dx, then ⌡⌠
A

B

 f(x) dx  is the probability that the variable lies between A and B and if all values of the

variable in  -∞ to ∞ are possible (with perhaps different probabilities), then ⌡⌠
-∞

∞

 f(x) dx  = 1, meaning that there is a 100%

chance of the variable being in -∞ to ∞ ... and all probability density functions, f(x), must satisfy this constraint, namely that

⌡⌠
-∞

∞

 f(x) dx  = 1. For example, the famous "normal" or Gaussian probability density,

f(x) = 
1
2π

  e-x2/2, describes (among other things) the distribution of random errors in a measurement and satisfies
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⌡
⌠

-∞

∞

 
1
2π

 e-x2/2 dx  = 1 (as it must). In fact,  
⌡
⌠

-1

1

 
1
2π

 e-x2/2 dx  would be the probability that the random variable lies between

-1 and 1. In fact ...
S: Wait! I haven't the foggiest idea of what you're talking about.
P: Sorry ... got carried away ... but it doesn't matter as long as you understand that improper integrals do arise in real problems.

Do you?
S: I guess so.

NOTE: ⌡⌠
a

∞
 f(x) dx  is defined as the limit of ⌡⌠

a

L
 f(x) dx  as L−>∞, and if f(x) ≥ 0 we can interpret ⌡⌠

a

L
 f(x) dx  as the

area "under y = f(x) from x = a to x = L". Clearly, if  ⌡⌠
a

∞
 f(x) dx   is to converge, the area ⌡⌠

a

L
 f(x) dx  must remain

finite as L−>∞ and this allows us ... sometimes ... to see clearly whether ⌡⌠
a

∞
 f(x) dx  converges. For example, consider

⌡⌠
1

∞

 e-x2
dx  = 

 
lim

L−>∞
 ⌡⌠
1

L

e-x2
dx  . As L increases, so does  ⌡⌠

1

L

e-x2
dx  (since the area under y = e-x2

 increases) . To show

that ⌡⌠
1

∞

 e-x2
dx  converges, we need only show that the area  ⌡⌠

1

L

e-x2
dx   doesn't become infinite as L−>∞. But

e-x2
 ≤ e-x when x ≥ 1 (since x2 ≥ x when x ≥ 1) so the area under y = e-x2

 is less than the area under y = e-x (from x

= 1 to x = L) and this latter area is ⌡⌠
1

L

 e-x dx  = [ ]- e-x L
1  = e-1- e-L = 

1
e  - 

1
eL   which is less than 

1
e  . We conclude that

⌡⌠
1

L

e-x2
dx   is always less than 

1
e  , hence cannot become infinite as L−>∞ ... so  ⌡⌠

1

∞

 e-x2
dx  converges ... and we

showed this without having to evaluate the integral  ⌡⌠
1

L

e-x2
dx (which would be tough!) .

In fact, if we stare at the "area under y = f(x) from x = a to x = L", it seems clear that, in order for ⌡⌠
a

∞
 f(x) dx   

to converge, the curve y = f(x) must approach zero very rapidly.

 We've already seen in example (a) above, that  ⌡
⌠

0

∞
dx

1+x   diverges and that's because y = 
1

1+x  , although it does
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approach zero, doesn't do it quickly enough. On the other hand, because of the explosive growth of ex, y = e-x = 
1
ex  

−> 0 very rapidly ... and we saw in example (b) that ⌡⌠
0

∞

e-x dx  , in fact, converges.

On the other hand, in example (c), y = sin x oscillates continually between -1 and +1 and the "area"

⌡⌠
-1

L
 sin x dx  = cos(-1) - cos L oscillates between a minimum of cos (-1) -1 and a maximum of cos(-1) + 1 and never

approaches any limiting value. On the other hand ...

S: How many hands have we got here? Can't we just do more problems?

Another Kind of Improper Integral

If the limits of integration (in ⌡⌠
a

b
 f(x) dx  ) are infinite (a = -∞ or b = ∞ ... or both) we have an IMPROPER

INTEGRAL and we now have a mechanism for dealing with these integrals. If a = -∞ and/or b = ∞ it means the
extent of variation of "x" is infinite. It means the graph extends an infinite distance in the "x"-direction. A picture is
worth a thousand words, so look at the picture ===>>

Here we consider an area of infinite extent in
the "x"-direction, from say x = 0 to x = ∞. (I keep
putting "x" in quotes for a reason!).

Now we rotate the area shown (actually, we
interchange x and y), so that it's infinite in extent in the
"y"-direction!

                  

Here's the picture ===>>
Remember, it's the same area! If the first is

finite, then so is the second. If the first is infinite, so is
the second. However, we now have a different kind of
problem. For this second area, it will have a form such

as ⌡⌠
0

1
 f(x) dx   where y = f(x) has a vertical asymptote at

x = 0, that is f(x) −> ∞ as x −> 0+. Such an integral as
this cannot be defined in terms of a limit of a Riemann

                     

SUM. Why? Because now the elemental rectangles can have infinite height! (Previously, they had infinite width.)
However, we avoid the problem (of not being able to define these integrals in terms of a limit of Riemann SUMs) by
defining them as follows:
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If f(x) is discontinuous at x = a,  then⌡⌠
a

b
 f(x) dx  = 

 
lim

L−>a+
 ⌡⌠
L

b
 f(x) dx  

In other words, we avoid integrating from x = a and instead begin at x = L (where L > a). This avoids the
place where f(x) is discontinuous and the integral is well-defined and we're happy. Then we let L sneak up on x = a
(from values greater than a, of course, hence L−> a+) and pray there is a limiting value. If so, that's the value of

⌡⌠
a

b
f(x)dx  . If not, then this improper integral doesn't have a value! (i.e it diverges).

Example: Evaluate  
⌡
⌠

0

1

 
dx

x
   , if possible.

Solution: This is an improper integral (since f(x) = 
1
x
  −> ∞ as x −> 0+) so we consider 

⌡
⌠

L

1
dx

x
  = [ ]2 x

1
L  =

2 - 2 L  and let L−>0+ to get   
⌡
⌠

0

1

 
dx

x
  = 2. The "area under y = 

1
x
   from x = 0 to x = 1" is infinite in extent (in the

"y"-direction), nevertheless it has a finite value.
We illustrate, graphically, what we do with these two types of improper integrals. Do you know why?

S: Yeah. A picture is worth a thousand words.

Remember, for ⌡⌠
a

∞
 f(x) dx   to have a value (i.e to "exist" or to "converge"), f(x) must get small enough fast

enough. We've already seen that y = 
1
x   doesn't get small enough fast enough, because ⌡

⌠

1

∞

 
dx
x    diverges (to infinity).

(We saw that when we considered the area under y = 
1
x  , remember?) On the other hand, the volume of revolution

gave rise to an integral 
⌡
⌠

1

∞

 
dx

x2   which did converge. What does that tell you?

S: Huh?

P: Pay attention. It means that f(x) = 
1
x   doesn't get small enough fast enough, but f(x) = 

1

x2   does! Now, a problem for you. If



57

f(x) = 
1

xp  , how big do we have to make the number p in order that 
⌡
⌠

1

∞

 
dx

xp   converge?

S: Well, that's pretty easy. If p = 2, it converges and if p = 1 it doesn't.
P: And if p = 1.5 ?

S: Oh, yeah, well ... we write 
⌡
⌠

1

∞
dx

xp   = [ ]
1

-p+1 x-p+1 ∞
1  = 

1
-p+1  (∞-p+1 ... 

P: No, no! You haven't been listening! You can't just substitute x = ∞! You have to consider ⌡⌠
1

L
  and let L−>∞.

S: Fussy, fussy. Okay, I get 
⌡
⌠

1

L
dx

xp  =[ ]
1

-p+1 x-p+1 L
1  = 

1
p-1  - 

1
p-1  L1-p and now I let L−>∞ and get 

1
p-1   since L1-p drops dead

as L−>∞, right?
P: Even if p = 1?

S: No, I'm talking about p>1. That'd make 1-p < 0 so L1-p is really L raised to a negative power and that'd make it go to zero as
L−>∞. Right?

P: You've been eating smart pills again. That's very good. So what's your conclusion?
S: I conclude that ... uh ... I don't understand the question.

P: You'd conclude that, if p>1, then y = 
1

xp   decrease rapidly enough for the area under the curve to be finite. That is,

⌡
⌠

1

∞

 
1

xp dx   converges if p > 1, to 
1

p-1  . If p = 1, the area is infinite.

S: I knew that.
P: Guess what?
S: What.
P: We're finished the course!
S: Yeah! Yeah! Yeah!

SOLUTIONS TO "ASSORTED PROBLEMS"

1. (a)
|x2-8| - |2+x|

x-2    = 
-(x2-8) -(2+x)

x-2   = 
6-x-x2

x-2   = 
(2-x)(3+x)

x-2   = 3+x (for x ≠ 2) −> 5 as x −> 2.

(b)
f(x)  -  f(2)

x -  2   = 
(x-2)  sin 

π
x

x-2   = sin 
π
x  −> sin 

π
2   = 1 as x −> 2

(c) f(t) = |sin t| = -sin t near x = - 
π
3 (since sin t < 0)  hence f'(x) = - cos x = - cos(-

π
3 ) (at x = - 

π
3  ) = - 

1
2 
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2.   y = 
x2 + 1
x + 1    = 

7-x
3    when 2x2- 3x - 2 = 0, or (2x+1)(x-2) = 0 hence curves

intersect when x = 
-1
2   and x = 2. For a quick sketch of y = 

x2+1
x+1   , note

that it has a vertical asymptote at x = -1/2 and that y = 1 when x = 0 and
y ≈ x2/x = x when x is large (neglecting the constants). The area is then

⌡
⌠

-1/2

2







 
7-x
3  - 

x2 + 1
x + 1 dx  = 



7

3 x - 
x2

3
2

-1/2  - ⌡
⌠

-1/2

2
x2+1
x+1  dx .

 In this remaining integral we set u = x+1 so du = 
du
dx  dx = (1) dx = dx and change the limits: when x = -1/2,     u

= 1/2 and when x = 2, u = 3. We get for this integral:

⌡
⌠

1/2

3
(u-1)2+1

u  du  = ⌡
⌠

1/2

3





u - 2 + 

2
u  du  = 



u2

2  - 2u +2ln |u|
3

1/2 .

      After evaluating we get an area:

       
35
6   - 2 ln 3 + 2 ln 

1
2   or  

35
6   - 2 ln 6 ≈ 2

      and we check for reasonableness by comparing with the area of
the triangle shown: area of triangle = (1/2)(base)(height) =
(1/2)(5/2)(5/2 - 1) = 15/8 ≈ 2 which seems okay.

3.  
⌡
⌠ x+5

x2+4x+4
 dx =

⌡
⌠ x+5

(x+2)2
 dx . Let u=x+2, du=dx and get 

⌡
⌠u+3

u2 du  =ln | u | - 
3
u  +C =ln |x+2| - 

3
x+2  + C.

4.  (a) Using xn+1 = xn - 
f(xn)
f '(xn)   with f(x) = x3-x2+x+22 we get:

xn+1 = xn - 
xn3-xn2+xn+22

3xn2-2xn+1
  . The only root is slightly

larger than 3, so we use x1=3 and get
x2=3.045789, x3=3.044724, x4=3.044723, x5=3.044723
and we conclude that the root is 3.04472 to five dec. places.

(b) With f(x) = x ln x - 6 we get:  xn+1=xn - 
xn ln xn - 6
ln xn + 1   .

There is one root between 4 and 5. If we use x1=4.3 we
get x2=4.189351, x3=4.188760, x4=4.188760 and we
conclude that the root is 4.18876 to five dec. places.

   

5. (a)
lim

x−>0 
1 - cos2x

x2   = 
lim

x−>0 
2 cos x sin x

2x   = 
lim

x−>0 
sin 2x

2x   = 
lim

x−>0 
2 cos 2x

2   = 
2
2  = 1 (which is not surprising 

since the ratio is just 



sin x

x  
2
 which has a limit of 1).

(b)
lim

x−>0 
ex - 1 - x - x2

x2   = 
lim

x−>0 
ex- 1 - 2x

2x   = 
lim

x−>0 
ex- 2

2   = 
1 - 2

2   = - 
1
2  (and this actually tells us that  

ex  ≈ 1 + x + 
x2

2   which is the quadratic approximation at x = 0.



59

6. (a)

Using vertical rectangles: Using horizontal rectangles:

Area = ⌡⌠
0

1
x dx  + ⌡⌠

1

e
(1 - ln x) dx Area = ⌡⌠

0

1

(ey - y) dy 

(b)

Using horizontal rectangles: Using vertical rectangles:

Volume = π ⌡⌠
0

1

x2 dx Volume = 2π ⌡⌠
0

1
x y dx 

= π ⌡⌠
0

1
(1-y) dy = 2π ⌡⌠

0

1

x (1-x2) dx 

7. (a)
lim

x−>0 
|x+7|+|2x-3|

x    = 
lim

x−>0 
(x+7)-(2x-3)

x  (since x+7>0 and 2x-3<0 when x≈0)  = 
lim

x−>0 
-x+10

x    does not exist

(since 
10
x   −>±∞ depending upon whether x−>0+ or 0-).

(b) ( )x4+2x - x2+x  
x4+2x + x2+x

x4+2x + x2+x
  = 

x4-x2+x

x4+2x + x2+x
  = 

1 - 1/x2 + 1/x3

x4+2x + x2+x
x4

  where we've divided

numerator and denominator by x4 (the highest power of x). Now x4 = x8  hence the denominator becomes

1/x4+2/x7  + 1/x6+1/x7  −> +0 as x −> -∞ whereas the numerator −> 1. Hence the ratio −> ∞.

8. (a) Let A = arctan(-1
2 ) so that tan A = - 

1
2   and A must lie in -π/2 < A < π/2 (the

range of the arctan function). Clearly, A lies in the fourth quadrant. From the

diagram, cos



arctan(-1

2)   = cos A = 
2
5

  .

(b)
d
dx 





arcsin x + 
1-x2

x    = 
1

1-x2
  + 

x 




-x

1-x2
 - 1-x2

x2   = 
1

1-x2
  + 

-x2 - (1-x2)

x2 1-x2
  = 

x2 - 1

x2 1-x2
  = - 

1-x2

x2   .

9. (a)
1
2 
⌡
⌠

0

2

 
1

4 + x2 dx  = 
1
2 



1

2 arctan 
x
2

2
0  = 

1
4 ( )arctan 1 - arctan 0   = 

1
2 

π
4  = 

π
8  .



60

(b) ⌡⌠
-1

1

 10x dx  = 



1

ln 10 10x 1
-1  = 

9.9
ln 10  .

10. (a)
lim

L−>1- 









⌡
⌠

0

L
dx

1-x2
   = 

lim

L−>1- [ ]arcsin x
L
0  =  

lim

L−>1-  arcsin L = arcsin 1 = 
π
2  .

(b)
d
dx 











⌡⌠
-x2

x2

 t sin t dt   = 
d
dx 





⌡⌠

1

u
t sin t dt - ⌡⌠

v
t sin t dt   = u sin u 

du
dx  - v sin v 

dv
dx  = 2x3 sin x2 - 2x3 sin(-x3) = 4x3

sin x2 where we've set u = x2 and v = -x2. (Note: we could have written ⌡⌠
-x2

x2

t sin t dt  = 2 ⌡⌠
0

x2

 t sin t dt  as well,

since the integrand is an EVEN function of x.)

11. Write y = f(x) = 
4x3

x2+1
  , then x = f(y) = 

4y3

y2+1
  (interchanging x and y) . Were we able to solve this latter equation

for y we'd have y = g(x), the inverse of f(x).

(a) f '(x) =  
(x2+1) 12x2 - 4x3(2x)

(x2+1)2
   = 

4x4 + 12x2

(x2+1)2
  ≥ 0 when x ≥ 0 so f has an inverse there (... and everywhere

else for that matter!).

(b) To find y = g(x) when x = 2 we must solve 2 =  
4y3

y2+1
   and the solution is clearly y = g(2) = 1. (Note: the

value x = 2 was chosen so you could find y by inspection!)

(c) To find 
dy
dx  = g '(x) when x = 2 (and y = 1) we differentiate x = 

4y3

y2+1
  implicitly, giving

1 = 
(y2+1) 12y2 - 4y3(2y)

(y2+1)2
 
dy
dx   then substitute y = 1 to get  1 = 4 

dy
dx   so 

dy
dx   = g '(x) = 

1
4  when x = 2.

(Note: Don't solve for dy/dx, then substitute; substitute first then find dy/dx ... it's much easier!)
12. We want to determine whether eπ > πe or, to put it differently, whether e1/e > π1/π (raising both sides of the

inequality to the power 
1
πe  ). Hence we consider the function y = x1/x to see if it's increasing or decreasing when

x goes from x = e to x = π. We use logarithmic differentiation: ln y = 
1
x  ln x  so 

1
y 

dy
dx  = 

x (1/x) - ln x
x2   

= 
1 - ln x

x2    which is positive (hence ln y is increasing) when ln x < 1, i.e. when x < e, and decreases thereafter. In

particular, ln y, hence y, is smaller at x = π than at x = e, so π1/π < e1/e or, to put it differently, πe < eπ. (In fact,
x1/x has its maximum value at x = e).

13. Let (x,y) be a point on y = (3 - x2)/2. Then the distance from (0,0) to (x,y)

is L = x2+y2  which we want to minimize. In fact, it's simpler to
minimize L2 = x2 + y2. First substitute x2 = 3 - 2y (the equation of the

curve, rewritten) and get L2 = 3 - 2y + y2 so 
d
dy  L2 = -2 + 2y < 0 when   y

< 1 (so L2 is decreasing) then  
d
dy  L2 > 0 when y > 1 (so L2 is

  

increasing). Hence the minimum occurs at y = 1, hence x = ± (3-y2)/2  = ±1. Note that as you travel along the

curve (from the third quadrant where y is negative), 
d
dy  L2 is first negative so L2 is decreasing ... to a minimum
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at (-1,1), then 
d
dy  L2<0 so L2 increases (because y > 1), then it decreases again until y = 1 again (at (1,1).

(A picture is worth a thousand words!)

14. (a)
d
dx



ln (ln x)

ln x   = 
ln x



1

ln x 
1
x  - ln (ln x)

1
x

(ln x)2
  = 

1 - ln (ln x)
x (ln x)2

  .

(b)
d
dx( )x cos (ln x)   = x 



- sin (ln x) 

1
x   + cos (ln x) = cos (ln x) - sin (ln x) .

15. Area = ⌡
⌠

0

4

( x - 
x
2 ) dx   ... using vertical rectangles

= 



3

2 x3/2 - 
x2

4
4
0  = 

3
2 (8)  - 4 = 8.

Area = 
⌡
⌠

-4

-2
dx
x3  = 



(- 

1
2 x-2)

-2
-4  = - 

3
32  , and of course we get the negative of the area

because  
1
x3   is negative on [-4,-2] .. so the area is actually 

3
32 

16. ⌡⌠
-t2

t2

 sin x3 dx  = 0 since the integrand is an ODD function. (Remember the test for an ODD function: f(-x) = f(x)

which, for our f(x), becomes: f(-x) = sin (-x)3 = sin(-x3) = - sin x3 = - f(x)).

17. (a) If y = ax then ln y = x ln a  and  
1
y 

dy
dx  = ln a  so 

dy
dx  = y ln a = ax ln a.

(b) If y = xx  then ln y = x ln x  and  
1
y 

dy
dx  = 1 + ln x  so 

dy
dx  = y (1 + ln x) = xx ( 1 + ln x).

18. Let f(x) = x1/3. Then f(64) = 641/3 = 4 and f '(x) = 
1
3  x-2/3 so f '(64) = 

1

3(64)2/3  = 
1

3(42)
  = 

1
48  . The linear

approximation is: f(x) = x1/3  ≅  f(64) + f '(64) (x - 64) = 4 + 
1

48 (x - 64) . At x = 62 get the approximation: 621/3

≈ 4 - 
1

24 

19.
⌡
⌠ dx

ex + e-x  . Let u = ex so x = ln u and dx = 
dx
du  du = 

1
u  du. Then get ⌡

⌠ du/u
u+1/u  = 

⌡
⌠ du

u2+1
  = arctan ex + C.

20. f(x) = 
(x-1)(x+1)

x(x+1)   = 
x-1
x   provided x ≠ -1. Hence we

need only sketch y = 1 - 
1
x   and put an "open circle"

at x = -1. Since 
 

lim
x−>∞

  y = 1, there is a horizontal

asymptote: y = 1. Since  
 

lim
x−>0

  y = ±∞, the y-axis is

a vertical asymptote. There are no critical points.
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21. We sketch, and note the points of intersection: (0,0) and (π/4,1).

The area (using vertical rectangles) is ⌡
⌠

0

π/4

(
4x
π  - tan x) dx  

= 



2x2

π  + ln |sec x|
π/4
0   = 

π
8  + ln 2  .

22.

(a) The area inside r = sin θ is:  
1
2 ⌡⌠

0

π

sin2θ dθ  = 
1
2 ⌡
⌠

0

π
1-cos 2θ

2  dθ  = 
1
2 



θ

2 - 
1
4 sin 2θ

π
0  =

π
4  (noting that the circle is traversed once when θ runs from 0 to π) . This agrees (of course!) with π(1/2)2.

(b) The area inside r =1- sin θ and inside the circle r = 1 is: 2







1

2 ⌡⌠
-π/2

0

12 dθ + 
1
2 ⌡⌠

0

π/2

(1-sinθ)2 dθ   ... taking double

the area to the right of the y-axis and noting that the area inside the circle is swept out when θ runs from -π/2 to

0 and the limaçon area when θ runs from 0 to π/2. This gives 
π
2  + ⌡⌠

0

π/2

(1 - 2 sin θ +sin2θ) dθ    and putting  sin2θ =

1
2  - 

cos 2θ
2    gives  

π
2  + ⌡

⌠

0

π/2

(
3
2 - 2 sin θ - 

1
2 cos 2θ) dθ  

= 
π
2  +



3θ

2  + 2 cos θ - 
1
4 sin 2θ

π/2
0   = 

5π
4   - 2  (about 

15
4   - 2  = 1.75 which is somewhat larger than half the

circular area:  
1
2  π 12 ≈ 1.5, so we're happy with our answer!).

(c) The area inside the smaller loop of the limaçon r = 1- 2 sin θ is: 2







1

2 ⌡⌠
π/6

π/2

(1-2 sinθ)2 dθ   taking twice the

area from θ = π/6 (which is the first time r goes to zero, after which r goes negative, sweeping out the inner loop)

to θ = π/2 (when r is its most negative). This gives ⌡⌠
π/6

π/2

(1-4sinθ+4sin2θ)dθ  = ⌡⌠
π/6

π/2

(3-4sinθ-2cos2θ)dθ  using, once

again, sin2θ = 1/2 - (1/2)cos2θ. We get  [ ]3θ + 4 cosθ - sin2θ
π/2
π/6  = π -

Error!.

(d) The area inside the lemniscate  r2 = cos 2θ is: 4







1

2 ⌡⌠
0

π/4

cos 2θ dθ   = 4[ ]sin2θ
π/4
0   = 4.

23. If r is the radius and h the height, the surface area is 2πr2 + 2πrh (the two ends plus the curved side). But r and h
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are related: volume = πr2h = 300 (given) so we substitute h = 300/πr2 and get the surface area as A(r) =
2πr2+600/r. To minimize we consider A'(r) = 4πr - 600/r2 = (4πr3 - 600)/r2 which is first negative when r is
small, (so the area is decreasing), then positive for large r (the area is increasing), so the minimum occurs for
A'(r) = 0, or r3=600/4π, or r = (150/π)1/3 and h = 300/πr2 = 2 (150/π)1/3. (Note:  h = 2r gives the minimum
amount of aluminum no matter what the volume of the can!)

24.

   

If the dimensions are x and y, then the area is xy. However, there's a relation
between x and y, namely 2x + y = 1000 (given length of fence), and if we
substitute y = 1000 - 2x we get the area A(x) = x (1000 - 2x) = 1000x - 2x2.
To maximize we consider A'(x) = 1000 - 4x which is first positive when x is

small (meaning the area is increasing), then negative when x is large (so the area is decreasing), hence the
maximum area occurs when A'(x) = 0, or x = 250 meters  ... hence y = 1000 - 2x = 500 metres.

25. We're given the rate of change 
dx
dt   where x gives the location of the man,

and we want to know 
dy
dt   where y is the length of shadow. To find the

relation between x and y we note the similar triangles: 
A

x+y  = 
B
y  so that

(A-B) y = B x. Differentiating gives (A-B) 
dy
dt   = B 

dx
dt   and, substituting,

we

get  
dy
dt   = 

B
A-B 

dx
dt   = 

2
8-2 (3)  = 1 m/s. (Note: most "related rate" problems ask for 

dy
dt   when x has some value.

Here, 
dy
dt   = 1 m/s for every value of x.)

26.  Let the minute and hour hands have lengths "a" and "b" respectively, and
let their angular displacements from the 12 o'clock position be α and β
respectively. (I like symbols better than numbers!) The distance between
them is given by the "cosine law" for triangles:  l2 = a2 + b2 - 2ab cos (β -

α). We know that 
dβ
dt   = 

2π radians
12 hours   = 

π
6  radians/hour and 

dα
dt   = 

2π radians
1 hour   

= 2π radians/hour and we wish to know 
dl
dt  when α = 0 and β =

π
2  (i.e 3 o'clock) . Differentiating the relation between l, α and β gives:

     

 2l 
dl
dt  = 2ab sin (β - α) 



dβ

dt  - 
dα
dt   and substituting what we're given (including l = 32+42  = 5, at 3 o'clock)

gives 
dl
dt  = 

(3)(4)
5   sin 

π
2 



π

6 - 2π   = - 
61π
15   cm/hour. (A negative sign, so the tips are getting closer together.)

27. For f(x) = cos x, f '(x) = - sin x, f ' '(x) = - cos x and f ' ''(x) = sin x. The "familiar" angle nearest to 57˚ is 60˚, or x

= π/3, so we get the cubic approximation: f(
π
3 ) + f '(

π
3 ) (x-

π
3 ) + f ' '(

π
3 ) 

(x-
π
3)2

2!   + f ' ''(
π
3 ) 

(x-
π
3)3

3!   

= 
1
2  - 

3
2  ( x - 

π
3 )  - 

1
2 

(x - 
π
3 )2

2!   + 
3

2  
(x - 

π
3 )3

3!   and, for x - 
π
3  = - 3 

π
180  = -

π
60  (which is - 3˚, expressed in RADIANS!) , we get  cos 57˚ ≈ .54463888 (compared to the "exact" value of

.54463903).
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28.

 

Let the top of the picture be "b" metres above your eye, the bottom
"a" metres. If you stand a distance "x" metres from the wall, the angle
subtended by the picture at your eye is β - α (see diagram) where tan

β = 
b
x  (so β = arctan 

b
x )  and tan α = 

a
x  (so α = arctan 

a
x ) . We

maximize β - α = f(x) = arctan 
b
x  - arctan 

a
x   for x > 0. First, we

compute f '(x) = 
1

1+(b/x)2
 




-b

x2   - 
1

1+(a/x)2
 




-a

x2   = 
(b-a)(ab - x2)

(x2+a2)(x2+b2)
  

which is first positive (when x is small) so that the angle is
increasing, then f '(x) < 0 when x is large ... so the maximum occurs when f '(x) = 0, at x =

ab (which has the correct dimensions; if a and b are in metres, so is x) . For b = 3 and a = 1 we get x = 3  
metres. (Note: although we're given the dimensions "a" and "b", I choose to give them labels so I can check the
dimensions ... and am less likely to make errors in arithmetic: I can always multiply "a" by "b" and get "ab" ...
I'm not so sure about 3 and 1.)

29. To find a point of intersection of  xy = 2    and  x2 - y2 = 1, put y = 
2

x   into the second equation, giving:    x2 -

2

x2  = 1, or x4 - x2 - 2 = 0, or (x2 - 2)(x2+1) = 0, hence x2 - 2 = 0 and x = ± 2 , so y = 
2

x   = ±1. There are two

points of intersection: ( 2 ,1) and (- 2 ,-1). At these points we expect the tangent lines to be perpendicular:
d
dx( )xy = 2   gives  

dy
dx  = - 

y
x  = - 

1
2

   for the first curve (at both points of intersection) and 
d
dx( )x2-y2=1   gives

dy
dx  = 

x
y  = 2 (at both points of intersection) . The product of these slopes is -1, hence they are perpendicular.

30. (a)
d
dx ( )x + y = 1   gives 

1
2 x

  + 
1

2 y
 
dy
dx  = 0 so 

dy
dx  = - 

y
x  . At the point (a,b), the tangent has slope    - 

b
a   

and the tangent line is:   
y - b
x - a  =  - 

b
a     or y - b = - 

b
a  (x - a)   or  y = b - 

b
a  (x - a) .

(b) Put x = 0 to get the y-intercept, namely y = b + a 
b
a  = b + ab  .

Put y = 0 to get the x-intercept, namely x = a + b
a
b  = a + ab  .

(c) The sum of the intercepts is a + 2 ab   + b = ( )a + b  2 = 12 = 1.

(Note: a  + b  = 1, since (a,b) lies on the curve.)

31. Curves  r=θ,  r=cos θ intersect where f(θ)=θ-cos θ=0. A
plot of f(θ) indicates a single root near θ=1, so we start
Newton's method with θ1=1.

The Newton iterations satisfy:
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θn+1 = θn - 
f(θn)

f '(θn)
  = θn - 

θn-cosθn
1+sinθn

  . Starting with

θ1=1 we get: θ2 = 0.75036387, θ3 = 0.73911289,

θ4 = 0.73908513, θ5 = 0.73908513 and conclude that

the point of intersection occurs at θ = 0.73908513
radians (about 42 degrees) so r = θ = 0.73908513 as
well.

32. Consider f(x) = π(1 - x) - 2x ln 
1
x  = π(1 - x) + 2x ln x  (noting that ln 

1
x  = - ln x). To show that f(x) > 0,

we'll find the minimum value of f(x) and hope that it's positive. First we investigate where f(x) is increasing or
decreasing using f '(x) = -π + 2(1 + ln x) which is negative at first (when x is near 0 since ln x −> -∞ when x−>0+)

then positive when x is large. The minimum then occurs when -π + 2(1 + ln x) = 0 or ln x = 
π
2  - 1  or x = eπ/2 - 1.

Substituting into π(1 - x) + 2x ln x  gives  π - 2 eπ/2 - 1  which is positive.

33. (a)   
⌡
⌠

0

L

 
dx

1+x2  = [ ]arctan x
L
0  = arctan L - arctan 0 = arctan L −> 

π
2  as L−>∞.

(b)   In 
⌡
⌠

1

L

 
sin x

x
 dx  , let u = x   so du = 

du
dx  dx = 

dx
2 x

   and as x goes from 1 to L, u goes from 1  to L  . We get

⌡⌠
1

L
 2 sin u du  = [ ]-2 cos u

L
1   = 2 cos (1) - 2 cos L   which has no limit as L−>∞, hence  

⌡
⌠

1

∞

 
sin x

x
 dx  doesn't

exist (i.e this improper integral diverges).

(c)   ⌡⌠
-∞

∞

 e-|x| dx  = ⌡⌠
-∞

0

ex dx  +

⌡⌠
0

∞

e-x dx  (where we've split the integral and set |x| = -x when x ≤ 0 and |x| = x when    x ≥ 0) . We have that

⌡⌠
-∞

0

ex dx  = 
 

lim
A−>-∞

 ⌡⌠
A

0

ex dx  = 
 

lim
A−>-∞

 [ ]ex 0
A  =  

 
lim

A−>-∞
 (1 - eA)  = 1 and, in a similar manner,

 ⌡⌠
0

∞

e-x dx  = 
 

lim
B−>∞

 ⌡⌠
0

B

e-x dx  = 
 

lim
B−>∞

 [ ]- e-x B
0  =  

 
lim

B−>∞
 (1 - e-B)  = 1. Hence ⌡⌠

-∞

∞

 e-|x| dx  = 1 + 1 = 2.

(d)
⌡
⌠

-1

1

 
dx
x2   = 

⌡
⌠

-1

0

 
dx
x2  + 

⌡
⌠

0

1

 
dx
x2   and 

⌡
⌠

0

1

 
dx
x2   = 

 
lim

a−>0+
 
⌡
⌠

a

1

 
dx
x2  = 

 
lim

a−>0+
 



 -1

x
1
a  =  

 
lim

a−>0+
 



1

a - 1   = ∞ so 
⌡
⌠

0

1

 
dx
x2   diverges
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hence so does 
⌡
⌠

-1

1

 
dx
x2  

(e)   
⌡
⌠

L

π
dx

x1/3  = 



3

2 x2/3 π
L  = 

3
2  π3/2  - 

3
2  L3/2 −> 

3
2  π3/2  as L−>0, so 

⌡
⌠

0

π

 
dx

x1/3   converges to  
3
2  π3/2.

(f)   ⌡
⌠

-1

L
dx
x-1  = [ ]ln |x - 1|

L
-1  = ln | L - 1| - ln 2 −> -∞ as L−>1-  (recall that ln | L - 1| −> -∞ as | L - 1| −>0+). Hence,

⌡
⌠

-1

1
dx
x-1   has no value ... or "diverges" ... or "doesn't exist".

(g) For ⌡⌠ln x dx  let u = ln x and dv = dx so du = 
du
dx  dx = 

1
x  dx and v = x and we get (integrating by parts)

⌡⌠u dv  = uv - ⌡⌠v du  = x ln x - ⌡
⌠x 

1
x dx  = x ln x - x + C. Hence:

⌡⌠
L

1
 ln x dx  = [ ]x ln x - x

1
L  = { }(1)ln (1) - 1   - { }L ln L - L   = -1 + L - L ln L  (noting that ln 1 = 0)

and now we must evaluate 
 

lim
L−>0+

  L ln L. If we rewrite  L ln L  as  
ln L

1
L

   it then has the form 
∞
∞  and we can use

l'Hopital's rule:  
 

lim
L−>0+

   
ln L

1
L

   =  
 

lim
L−>0+








 

1
L

- 
1

L2

  =  
 

lim
L−>0+

 (-L)  = 0. Hence  ⌡⌠
0

1
 ln x dx  = 

 
lim

L−>0+
 ⌡⌠
L

1
 ln x dx  = -1.

(The fact that's it's negative should be no surprise: ln x < 0 when 0 < x < 1).


